Book picks similar to
The Simple Genetic Algorithm: Foundations and Theory by Michael D. Vose
computer-science
ga
logic--math--modelling
science
The Little Book of Mathematical Principles, Theories, & Things
Robert Solomon - 2008
Rare Book
Automate This: How Algorithms Came to Rule Our World
Christopher Steiner - 2012
It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others? Who knows—maybe there’s a bot learning to do your job this minute.
Computational Fairy Tales
Jeremy Kubica - 2012
The goal of this book is not to provide comprehensive coverage of each topic, but rather to provide a high level overview of the breadth and excitement of computer science. It's a quest that will take you from learning the basics of programming in a blacksmith's forge to fighting curses with recursion. Fifteen seers delivered the same prophecy, without so much as a single minstrel to lighten the mood: an unknown darkness threatens the kingdom. Suddenly, Princess Ann finds herself sent forth alone to save the kingdom. Leaving behind her home, family, and pet turtle Fido, Princess Ann must face goblin attacks, magical curses, arrogant scholars, an unpleasant oracle, and rude Boolean waiters. Along the way she must build a war chest of computational knowledge to survive the coming challenge.
The Creativity Code: How AI Is Learning to Write, Paint and Think
Marcus du Sautoy - 2019
They can navigate more data than a doctor or lawyer and act with greater precision. For many years we’ve taken solace in the notion that they can’t create. But now that algorithms can learn and adapt, does the future of creativity belong to machines, too?It is hard to imagine a better guide to the bewildering world of artificial intelligence than Marcus du Sautoy, a celebrated Oxford mathematician whose work on symmetry in the ninth dimension has taken him to the vertiginous edge of mathematical understanding. In The Creativity Code he considers what machine learning means for the future of creativity. The Pollockizer can produce drip paintings in the style of Jackson Pollock, Botnik spins off fanciful (if improbable) scenes inspired by J. K. Rowling, and the music-composing algorithm Emmy managed to fool a panel of Bach experts. But do these programs just mimic, or do they have what it takes to create? Du Sautoy argues that to answer this question, we need to understand how the algorithms that drive them work―and this brings him back to his own subject of mathematics, with its puzzles, constraints, and enticing possibilities.While most recent books on AI focus on the future of work, The Creativity Code moves us to the forefront of creative new technologies and offers a more positive and unexpected vision of our future cohabitation with machines. It challenges us to reconsider what it means to be human―and to crack the creativity code.
Richard Dawkins' God Delusion: A Repentant Refutation
Klaus Nürnberger - 2010
Part I asks: Is evolving Nature all there is – self-generated, self-sustaining, self-contained? Are human beings, as the topmost outgrowth of Nature, responsible to none other but themselves? That is the stance of naturalist and atheist Richard Dawkins. Or is evolving reality derived from, and dependent on, a transcendent Source and Destiny, to whom humans are accountable and whose benevolence reaches out to humans as persons because humans are persons? That is the conviction of the Christian faith. Part II shows that Dawkins’ interpretation of religion is deficient even in evolutionary terms and lacks the objectivity and impartiality of genuine science.Backed with in-depth study and thorough research, Richard Dawkins’ God Delusion: A repentant refutation is a masterfully written work that attempts to provide answers to believers and non-believers by presenting scientific and religious reasoning.
Worlds Hidden in Plain Sight: The Evolving Idea of Complexity at the Santa Fe Institute, 1984–2019
David C. KrakauerJennifer Dunne - 2019
Ignoring the boundaries of disciplines and schools and searching for novel fundamental ideas, theories, and practices, this international community integrates the full range of scientific inquiries that will help us to understand and survive on a complex planet. This volume collects essays from the past thirty years of research, in which contributors explain in clear and accessible language many of the deepest challenges and insights of complexity science. Explore the evolution of complex systems science with chapters from Nobel Laureates Murray Gell-Mann and Kenneth Arrow, as well as numerous pioneering complexity researchers, including John Holland, Brian Arthur, Robert May, Richard Lewontin, Jennifer Dunne, and Geoffrey West.
Coding Interview Questions
Narasimha Karumanchi - 2012
Peeling Data Structures and Algorithms: * Programming puzzles for interviews * Campus Preparation * Degree/Masters Course Preparation * Instructor's * GATE Preparation * Big job hunters: Microsoft, Google, Amazon, Yahoo, Flip Kart, Adobe, IBM Labs, Citrix, Mentor Graphics, NetApp, Oracle, Webaroo, De-Shaw, Success Factors, Face book, McAfee and many more * Reference Manual for working people
Elements of the Theory of Computation
Harry R. Lewis - 1981
The authors are well-known for their clear presentation that makes the material accessible to a a broad audience and requires no special previous mathematical experience. KEY TOPICS: In this new edition, the authors incorporate a somewhat more informal, friendly writing style to present both classical and contemporary theories of computation. Algorithms, complexity analysis, and algorithmic ideas are introduced informally in Chapter 1, and are pursued throughout the book. Each section is followed by problems.
A Shortcut Through Time: The Path to the Quantum Computer
George Johnson - 2003
Such a device would operate under a different set of physical laws: The laws of quantum mechanics. Johnson gently leads the curious outsider through the surprisingly simple ideas needed to understand this dream, discussing the current state of the revolution, and ultimately assessing the awesome power these machines could have to change our world.
The Emperor's New Mind: Concerning Computers, Minds and the Laws of Physics
Roger Penrose - 1989
Admittedly, computers now play chess at the grandmaster level, but do they understand the game as we do? Can a computer eventually do everything a human mind can do? In this absorbing and frequently contentious book, Roger Penrose--eminent physicist and winner, with Stephen Hawking, of the prestigious Wolf prize--puts forward his view that there are some facets of human thinking that can never be emulated by a machine. Penrose examines what physics and mathematics can tell us about how the mind works, what they can't, and what we need to know to understand the physical processes of consciousness. He is among a growing number of physicists who think Einstein wasn't being stubborn when he said his little finger told him that quantum mechanics is incomplete, and he concludes that laws even deeper than quantum mechanics are essential for the operation of a mind. To support this contention, Penrose takes the reader on a dazzling tour that covers such topics as complex numbers, Turing machines, complexity theory, quantum mechanics, formal systems, Godel undecidability, phase spaces, Hilbert spaces, black holes, white holes, Hawking radiation, entropy, quasicrystals, the structure of the brain, and scores of other subjects. The Emperor's New Mind will appeal to anyone with a serious interest in modern physics and its relation to philosophical issues, as well as to physicists, mathematicians, philosophers and those on either side of the AI debate.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
The Vital Question: Energy, Evolution, and the Origins of Complex Life
Nick Lane - 2015
Yet there’s a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane’s hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.Both rigorous and enchanting, The Vital Question provides a solution to life’s vital question: why are we as we are, and indeed, why are we here at all?
The Waite Group's Turbo C Programming for the PC
Robert Lafore - 1987
Assuming no prior knowledge of C, this introductory-level book demonstrates and explains how to write useful and marketable programs in Turbo C on the IBM PC, XT, AT, and PC/Z computers.
Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World
Leslie Valiant - 2013
We nevertheless muddle through even in the absence of theories of how to act. But how do we do it?In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is “probably approximately correct” algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant’s theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence.Offering a powerful and elegant model that encompasses life’s complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.