Hacking Matter: Levitating Chairs, Quantum Mirages, And The Infinite Weirdness Of Programmable Atoms


Wil McCarthy - 2003
    But it's coming, and when it does, it will change our lives as much as any invention ever has. Imagine being able to program matter itself-to change it, with the click of a cursor, from hard to soft, from paper to stone, from fluorescent to super-reflective to invisible. Supported by organizations ranging from Levi Strauss and IBM to the Defense Department, solid-state physicists in renowned laboratories are working to make it a reality. In this dazzling investigation, Wil McCarthy visits the laboratories and talks with the researchers who are developing this extraordinary technology, describes how they are learning to control it, and tells us where all this will lead. The possibilities are truly astonishing.

Black Holes and Warped Spacetime


William J. Kaufmann III - 1979
    They infinitely warp space and time, allowing nothing to escape: not matter, not even light. They are stellar corpses that have crushed themselves into oblivion, seemingly suspending the traditional laws of physics. The Big bang may have peppered the universe with primordial black holes, as small as protons but as massive as mountains. The universe itself may be disappearing into the final black hole. Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime. The author's engrossing, non-technical explanations are enhanced by numerous illustrations.

Mathematics of Classical and Quantum Physics


Frederick W. Byron Jr. - 1969
    Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.

Mathematics In The Modern World: Readings From Scientific American


Morris Kline - 1968
    

Ancient Rome: From the Earliest Times Down to 476 A.D.


Robert Franklin Pennell - 1890
    You may find it for free on the web. Purchase of the Kindle edition includes wireless delivery.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

Quantum Mechanics


Claude Cohen-Tannoudji - 1977
    Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.

Introduction to Modern Optics


Grant R. Fowles - 1968
    The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and multilayer-film theory. Diffraction and holography are the subjects of Chapter 5, and the propagation of light in material media (including crystal and nonlinear optics) are central to Chapter 6. Chapters 7 and 8 introduce the quantum theory of light and elementary optical spectra, and Chapter 9 explores the theory of light amplification and lasers. Chapter 10 briefly outlines ray optics in order to introduce students to the matrix method for treating optical systems and to apply the ray matrix to the study of laser resonators.Many applications of the laser to the study of optics are integrated throughout the text. The author assumes students have had an intermediate course in electricity and magnetism and some advanced mathematics beyond calculus. For classroom use, a list of problems is included at the end of each chapter, with selected answers at the end of the book.

The Entrepreneur Equation: Evaluating the Realities, Risks, and Rewards of Having Your Own Business


Carol Roth - 2011
    By understanding what it takes to build a valuable business as well as how to assess the risks and rewards of business ownership based on your personal circumstances, you can learn how to stack the odds of success in your favor and ultimately decide if business ownership is the best possible path for you, now or ever.Through illustrative examples and personalized exercises, tell-it-like-it-is Carol Roth helps you create and evaluate your own personal Entrepreneur Equation as you:-Learn what it takes to be a successful entrepreneur in today's competitive environment.-Save money, time and effort by avoiding business ownership when the time isn't right for you.-Identify and evaluate the risks and rewards of a new business based on your goals and circumstances.-Evaluate whether your dreams are best served by a hobby, job or business.-Gain the tools that you need to maximize your business success.The Entrepreneur Equation is essential reading for the aspiring entrepreneur. Before you invest your life savings, invest in this book!

Introductory Quantum Mechanics


Richard L. Liboff - 1980
    Included in this edition is a new chapter on the revolutionary topic of quantum computing.

Entropy Demystified: The Second Law Reduced To Plain Common Sense


Arieh Ben-Naim - 2007
    The author paves the way for readers to discover for themselves what entropy is, how it changes, and most importantly, why it always changes in one direction in a spontaneous process.

An Introduction to Genetic Algorithms


Melanie Mitchell - 1996
    This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Multivariable Calculus


James Stewart - 1991
    In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.

Essential Poker Math: Fundamental No Limit Hold'em Mathematics You Need To Know


Alton Hardin - 2015
    I'm here to tell you it is not. In fact, fundamental poker math is very easy to learn. More importantly, it can yield you a lot more profits at the poker table. Without using simple math at the poker table, you are simply playing a guessing game. Use Simple Math at the Poker Table and Increase You Winnings In this book I will teach you how to use simple arithmetic at the poker table to gain a huge skill advantage over your opponents that will allow you to win more and lose less. Poker players that don't use math are simply guessing and you'll learn to no longer guess and know the right mathematical move at the poker table. These simple mathematical concepts I will be teaching you will drastically help improve your poker game and allow you to make the most profitable decisions at the poker. Contents and Overview First you will be introduced to some fundamental overarching poker concepts that apply to poker mathematics. Then we will begin our journey into poker mathematics where you will learn about probabilities and odds, pot odds and implied odds, pot equity, and expected value. You will then learn how to quickly estimate your equity at the poker table using the Rule of 2 & 4. Moreover, you'll learn the steps involved in determining if calling with a drawing hand is profitable or not. We will also cover how to size your bets with the best hand and teach you how often bluffs and hero calls need to work to be profitable. Lastly, we will show you how to perform EV calculations and better understand card combinations. Effectively Understand and Utilize Essential Poker Math Develop a keen understanding of Probability and Odds Learn to quickly calculate Pot Odds & Implied Odds at the poker table Effectively use Pot Equity & The Rule of 2 & 4 to Determine the correct poker play Understand how to use Expected Value (EV) both on and off the table to analyze your plays Learn the important math behind Bluffs & Hero Calls to give you a skill advantage over your opponent Learn Card Combinations to further enhance your card reading abilities And Many More Amazing Topics… What You Will Get out of This Book Suitable for both beginning and experienced poker players alike you'll learn many essential fundamental poker mathematical concepts that will help you drastically improve your poker game. After reading this book, you will have mastered fundamental No Limit Holdem mathematics. You will have gained a huge skill advantage over your opponents and you will be able to quickly and effectively use math at the poker table to make are always the most profitable move. Most importantly, you will become a much better and profitable poker player! So what are you waiting for? Purchase this book today to start learning how to advance your poker game with simple poker math! Alton Hardin is the founder of MicroGrinder.com, a free micro stakes poker website that is dedicated to helping micro stakes poker players improve their poker game by offering a wide array of free and low-cost resources including poker courses, poker t

Pathophysiology Made Incredibly Easy!


Lippincott Williams & Wilkins - 1998
    Chapters cover cancer, infection, immune disorders, genetics, and disorders of each body system, highlighting pathophysiologic processes, resulting signs and symptoms, diagnostic test findings, and current treatments. Reader-friendly features include illustrations, checklists, and full-color miniguides illustrating the pathophysiology of specific disorders.This edition has new full-color miniguides on cancer pathophysiology and neuropathology. A new Focus on Genetics feature identifies gene-related discoveries and their implications for treatment or diagnosis. Review questions and answers follow current NCLEX-RN® requirements and alternate-format questions are included.