Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Introduction to Probability Models
Sheldon M. Ross - 1972
This updated edition of Ross's classic bestseller provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.This book now contains a new section on compound random variables that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions; a new section on hiddden Markov chains, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states; and a simplified approach for analyzing nonhomogeneous Poisson processes. There are also additional results on queues relating to the conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; inspection paradox for M/M/1 queues; and M/G/1 queue with server breakdown. Furthermore, the book includes new examples and exercises, along with compulsory material for new Exam 3 of the Society of Actuaries.This book is essential reading for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability.
Nikon D5100 for Dummies
Julie Adair King - 2011
Coverage explores the on-board effects, low-light settings, and automatic HDR shooting. Clear explanations detail the ways in which you can use the new features of the Nikon D5100 to add unique shots to your portfolio while an explanation of photography terms gets you confident and savvy with this fun DSLR camera.Covers basic camera controls and functions, shooting in auto mode, setting photo quality, and navigating menus and the view screen Introduces the basics of photography, including the settings that control lighting, exposure, focus, and color Addresses the new low-light and HDR settings Encourages you to use the new onboard effects features and shares tips for improving images with editing software Get a grasp on the fun Nikon D5100 with this fun and friendly guide!
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
3D Math Primer for Graphics and Game Development
Fletcher Dunn - 2002
The Authors Discuss The Mathematical Theory In Detail And Then Provide The Geometric Interpretation Necessary To Make 3D Math Intuitive. Working C++ Classes Illustrate How To Put The Techniques Into Practice, And Exercises At The End Of Each Chapter Help Reinforce The Concepts. This Book Explains Basic Concepts Such As Vectors, Coordinate Spaces, Matrices, Transformations, Euler Angles, Homogenous Coordinates, Geometric Primitives, Intersection Tests, And Triangle Meshes. It Discusses Orientation In 3D, Including Thorough Coverage Of Quaternions And A Comparison Of The Advantages And Disadvantages Of Different Representation Techniques. The Text Describes Working C++ Classes For Mathematical And Geometric Entities And Several Different Matrix Classes, Each Tailored To Specific Geometric Tasks. Also Included Are Complete Derivations For All The Primitive Transformation Matrices.
No bullshit guide to math and physics
Ivan Savov - 2010
It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.
Divine Proportion: Phi In Art, Nature, and Science
Priya Hemenway - 2005
But its myriad occurrences in art, nature, and science have been a source of speculation and wonder for thousands of years. Divine Proportion draws upon both religion and science to tell the story of Phi and to explore its manifestations in such diverse places as the structure of the inner ear, the spiral of a hurricane, the majesty of the Parthenon, and the elusive perfection of the Mona Lisa. A universal key to harmony, regeneration, and balance, Phi is at the heart of a tantalizing story begun on clay tablets in ancient Babylon, and which will continue to be written for centuries to come.
Thinking Mathematically
John Mason - 1982
It demonstrates how to encourage, develop, and foster the processes which seem to come naturally to mathematicians.
Logic: A Very Short Introduction
Graham Priest - 2000
In this lively and accessible introduction, Graham Priest shows how wrong this conception is. He explores the philosophical roots of the subject, explaining how modern formal logic deals with issues ranging from the existence of God and the reality of time to paradoxes of probability and decision theory. Along the way, the basics of formal logic are explained in simple, non-technical terms, showing that logic is a powerful and exciting part of modern philosophy.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
The Functional Art: An Introduction to Information Graphics and Visualization
Alberto Cairo - 2011
With the right tools, we can start to make sense of all this data to see patterns and trends that would otherwise be invisible to us. By transforming numbers into graphical shapes, we allow readers to understand the stories those numbers hide. In this practical introduction to understanding and using information graphics, you'll learn how to use data visualizations as tools to see beyond lists of numbers and variables and achieve new insights into the complex world around us. Regardless of the kind of data you're working with-business, science, politics, sports, or even your own personal finances-this book will show you how to use statistical charts, maps, and explanation diagrams to spot the stories in the data and learn new things from it.You'll also get to peek into the creative process of some of the world's most talented designers and visual journalists, including Conde Nast Traveler's John Grimwade, National Geographic Magazine's Fernando Baptista, The New York Times' Steve Duenes, The Washington Post's Hannah Fairfield, Hans Rosling of the Gapminder Foundation, Stanford's Geoff McGhee, and European superstars Moritz Stefaner, Jan Willem Tulp, Stefanie Posavec, and Gregor Aisch. The book also includes a DVD-ROM containing over 90 minutes of video lessons that expand on core concepts explained within the book and includes even more inspirational information graphics from the world's leading designers.The first book to offer a broad, hands-on introduction to information graphics and visualization, The Functional Art reveals:- Why data visualization should be thought of as "functional art" rather than fine art - How to use color, type, and other graphic tools to make your information graphics more effective, not just better looking - The science of how our brains perceive and remember information - Best practices for creating interactive information graphics - A comprehensive look at the creative process behind successful information graphics - An extensive gallery of inspirational work from the world's top designers and visual artistsOn the DVD-ROM: In this introductory video course on information graphics, Alberto Cairo goes into greater detail with even more visual examples of how to create effective information graphics that function as practical tools for aiding perception. You'll learn how to: incorporate basic design principles in your visualizations, create simple interfaces for interactive graphics, and choose the appropriate type of graphic forms for your data. Cairo also deconstructs successful information graphics from The New York Times and National Geographic magazine with sketches and images not shown in the book.
Visual Complex Analysis
Tristan Needham - 1997
Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Applied Cryptography: Protocols, Algorithms, and Source Code in C
Bruce Schneier - 1993
… The book the National Security Agency wanted never to be published." –Wired Magazine "…monumental… fascinating… comprehensive… the definitive work on cryptography for computer programmers…" –Dr. Dobb's Journal"…easily ranks as one of the most authoritative in its field." —PC Magazine"…the bible of code hackers." –The Millennium Whole Earth CatalogThis new edition of the cryptography classic provides you with a comprehensive survey of modern cryptography. The book details how programmers and electronic communications professionals can use cryptography—the technique of enciphering and deciphering messages-to maintain the privacy of computer data. It describes dozens of cryptography algorithms, gives practical advice on how to implement them into cryptographic software, and shows how they can be used to solve security problems. Covering the latest developments in practical cryptographic techniques, this new edition shows programmers who design computer applications, networks, and storage systems how they can build security into their software and systems. What's new in the Second Edition? * New information on the Clipper Chip, including ways to defeat the key escrow mechanism * New encryption algorithms, including algorithms from the former Soviet Union and South Africa, and the RC4 stream cipher * The latest protocols for digital signatures, authentication, secure elections, digital cash, and more * More detailed information on key management and cryptographic implementations
Bayesian Data Analysis
Andrew Gelman - 1995
Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.