Book picks similar to
Superstring Theory: Volume 1, Introduction by Michael B. Green
physics
mathematics
string-theory
partially-read
All the Math You'll Ever Need: A Self-Teaching Guide
Stephen L. Slavin - 1989
In adollars-and-cents, bottom-line world, where numbers influenceeverything, none of us can afford to let our math skills atrophy.This step-by-step personal math trainer:Refreshes practical math skills for your personal andprofessional needs, with examples based on everyday situations. Offers straightforward techniques for working with decimals and fractions. Demonstrates simple ways to figure discounts, calculatemortgage interest rates, and work out time, rate, and distance problems. Contains no complex formulas and no unnecessary technical terms.
Code: The Hidden Language of Computer Hardware and Software
Charles Petzold - 1999
And through CODE, we see how this ingenuity and our very human compulsion to communicate have driven the technological innovations of the past two centuries. Using everyday objects and familiar language systems such as Braille and Morse code, author Charles Petzold weaves an illuminating narrative for anyone who’s ever wondered about the secret inner life of computers and other smart machines. It’s a cleverly illustrated and eminently comprehensible story—and along the way, you’ll discover you’ve gained a real context for understanding today’s world of PCs, digital media, and the Internet. No matter what your level of technical savvy, CODE will charm you—and perhaps even awaken the technophile within.
Concepts of Modern Physics
Arthur Beiser - 2002
Focusing on the ideas, this book considers relativity and quantum ideas to provide a framework for understanding the physics of atoms and nuclei.
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
Robert M. Eisberg - 1974
Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.
The Construction of Modern Science: Mechanisms and Mechanics
Richard S. Westfall - 1977
The Platonic-Pythagorean tradition looked on nature in geometric terms with the conviction that the cosmos was constructed according to the principles of mathematical order, while the mechanical philosophy conceived of nature as a huge machine and sought to explain the hidden mechanisms behind phenomena. Pursuing different goals, these two movements of thought tended to conflict with each other, and more than the obviously mathematical sciences were affected - the influence spread as far as chemistry and the life sciences. As this book demonstrates, the full fruition of the scientific revolution required a resolution of the tension between the two dominant trends.
Archimedes' Revenge: The Joys and Perils of Mathematics
Paul Hoffman - 1988
An extremely clever account.--The New Yorker.
Dark Cosmos: In Search of Our Universe's Missing Mass and Energy
Dan Hooper - 2006
Beginning with the publication of Albert Einstein's theory of relativity, through the wild revolution of quantum mechanics, and up until the physics of the modern day (including the astonishing revelation, in 1998, that the Universe is not only expanding, but doing so at an ever-quickening pace), much of what physicists have seen in our Universe suggests that much of our Universe is unseen—that we live in a dark cosmos.Everyone knows that there are things no one can see—the air you're breathing, for example, or, to be more exotic, a black hole. But what everyone does not know is that what we can see—a book, a cat, or our planet—makes up only 5 percent of the Universe. The rest—fully 95 percent—is totally invisible to us; its presence discernible only by the weak effects it has on visible matter around it.This invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together, while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would have ever expected: to discover what makes up our dark cosmos.
Alan Turing: Unlocking the Enigma
David Boyle - 2014
Turing’s openness about his homosexuality at a time when it was an imprisonable offense ultimately led to his untimely lo death at the age of only forty-one. In Alan Turing: Unlocking the Enigma, David Boyle reveals the mysteries behind the man and his remarkable career. Aged just 22, Turing was elected a fellow at King's College, Cambridge on the strength of a dissertation in which he proved the central limit theorem. By the age of 33, he had been awarded the OBE by King George VI for his wartime services: Turing was instrumental in cracking the Nazi Enigma machines at the top secret code breaking establishment at Bletchley Park during the Second World War.But his achievements were to be tragically overshadowed by the paranoia of the post-War years. Hounded for his supposedly subversive views and for his sexuality, Turing was prosecuted in 1952, and forced to accept the humiliation of hormone treatment to avoid a prison sentence. Just two years later, at the age of 41 he was dead. The verdict: cyanide poisoning.Was Turing’s death accidental as his mother always claimed? Or did persistent persecution drive him to take him own life?Alan Turing: Unlocking the Enigma seeks to find the man behind the science, illuminating the life of a person who is still a shadowy presence behind his brilliant achievements.
Astronomy
Andrew Fraknoi - 2012
The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.
The Flying Circus of Physics
Jearl Walker - 1975
Meet a man who can pull two railroad passenger cars with his teeth and a real-life human cannon ball. Come face to face with a dead rattlesnake that still bites. And unlock the secrets of a magician's bodiless head. Welcome to this updated edition of The Flying Circus of Physics, where death-defying stunts, high-flying acrobatics, strange curiosities, and mind-bending illusions bring to life the fascinating feats of physics in the world around us. In 1977, Wiley published the first edition of Jearl Walker's The Flying Circus of Physics, which has sold over 100,000 copies and become a cult classic in the physics community. The Flying Circus is a compendium of interesting real world phenomena that can be explained using basic laws of physics. This new edition represents a thorough updating and modernization of the book. The new edition gives us the opportunity to highlight Jearl's creativity, his communication skills, and his ability to make physics interesting.Jearl Walker, Ph.D., professor of physics at Cleveland State University and the man who frequently walked on hot coals and lay on beds of nails all in the name of science, is the first recipient of the Outstanding Teaching Award from Cleveland State's College of Science. The College's Faculty Affairs Committee selected Dr. Walker as the first honoree based on his impressive contributions to science teaching over the last 30 years. In fact, the award in future years will be named the Jearl Walker Outstanding Teaching Award in recognition of his many achievements.Jearl Walker received his B.S. in physics from MIT in 1967 and his Ph.D. in physics from the University of Maryland in 1973. His popular book, The Flying Circus of Physics, has been translated into at least 10 languages and is still being sold worldwide. For 16 years he toured his fun-filled Flying Circus lecture throughout the U.S. and Canada, introducing countless teachers to such physics phenomena as molecular adhesion by hanging spoons from his face and Leidenfrost's phenomenon by dipping his wet hand in molten lead without getting hurt.These lectures led to his national PBS television show, Kinetic Karnival, which ran for several years and won him a local Emmy Award. During his 13 years as a columnist with Scientific American magazine, Dr. Walker wrote 152 articles for The Amateur Scientist section, which were translated into at least 9 languages worldwide. His topics ranged from the physics of judo to the physics of bearnaise sauce and lemon meringue pie. In 1990, he took over the textbook Fundamentals of Physics from David Halliday and Robert Resnick and has now published the seventh edition of the book. He has appeared countless times on television and radio and in newspapers and magazines.
The Story of Mathematics
Anne Rooney - 2008
Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.
Who's Afraid of Schrodinger's Cat: All The New Science Ideas You Need To Keep Up With The New Thinking
Ian Marshall - 1997
The cat lives in an opaque box with a fiendish device that randomly feeds it either food, allowing it to live, or poison, which kills it. But in the quantum world, all possibilities coexist and have a reality of their own, and they ensure that the cat is both alive and dead, simultaneously.Who's Afraid of Schrvdinger's Cat? is a clear, concise explanation of the new sciences of quantum mechanics, chaos and complexity theory, relativity, new theories of mind, and the new cosmology. It studies worlds beyond the realm of common sense, and the new kinds of thinking that we need to understand ourselves, our minds, and our human place in the larger scheme of things.
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
Introductory Circuit Analysis
Robert L. Boylestad - 1968
Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.
Everything and More: A Compact History of Infinity
David Foster Wallace - 2003
Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.