Book picks similar to
R for Dummies by Joris Meys
tech
programming
statistics
for-dummies
Are You Smart Enough to Work at Google?
William Poundstone - 2012
The blades start moving in 60 seconds. What do you do? If you want to work at Google, or any of America's best companies, you need to have an answer to this and other puzzling questions. Are You Smart Enough to Work at Google? guides readers through the surprising solutions to dozens of the most challenging interview questions. The book covers the importance of creative thinking, ways to get a leg up on the competition, what your Facebook page says about you, and much more. Are You Smart Enough to Work at Google? is a must-read for anyone who wants to succeed in today's job market.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
How Linux Works: What Every Superuser Should Know
Brian Ward - 2004
Some books try to give you copy-and-paste instructions for how to deal with every single system issue that may arise, but How Linux Works actually shows you how the Linux system functions so that you can come up with your own solutions. After a guided tour of filesystems, the boot sequence, system management basics, and networking, author Brian Ward delves into open-ended topics such as development tools, custom kernels, and buying hardware, all from an administrator's point of view. With a mixture of background theory and real-world examples, this book shows both "how" to administer Linux, and "why" each particular technique works, so that you will know how to make Linux work for you.
Statistical Analysis with Excel for Dummies
Joseph Schmuller - 2005
mean, margin of error, standard deviation, permutations, and correlations-all using Excel
The Elements of Data Analytic Style
Jeffrey Leek - 2015
This book is focused on the details of data analysis that sometimes fall through the cracks in traditional statistics classes and textbooks. It is based in part on the authors blog posts, lecture materials, and tutorials. The author is one of the co-developers of the Johns Hopkins Specialization in Data Science the largest data science program in the world that has enrolled more than 1.76 million people. The book is useful as a companion to introductory courses in data science or data analysis. It is also a useful reference tool for people tasked with reading and critiquing data analyses. It is based on the authors popular open-source guides available through his Github account (https://github.com/jtleek). The paper is also available through Leanpub (https://leanpub.com/datastyle), if the book is purchased on that platform you are entitled to lifetime free updates.
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Python for Kids
Jason R. Briggs - 2012
Jason Briggs, author of the popular online tutorial "Snake Wrangling for Kids," begins with the basics of how to install Python and write simple commands. In bite-sized chapters, he instructs readers on the essentials of Python, including how to use Python's extensive standard library, the difference between strings and lists, and using for-loops and while-loops. By the end of the book, readers have built a game and created drawings with Python's graphics library, Turtle. Each chapter closes with fun and relevant exercises that challenge the reader to put their newly acquired knowledge to the test.
Machine Learning in Action
Peter Harrington - 2011
"Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.
Data Analysis Using SQL and Excel
Gordon S. Linoff - 2007
This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like.
Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers
John MacCormick - 2012
A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
Algorithms
Robert Sedgewick - 1983
This book surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use.The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts.The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants.Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.
Learning SQL
Alan Beaulieu - 2005
If you're working with a relational database--whether you're writing applications, performing administrative tasks, or generating reports--you need to know how to interact with your data. Even if you are using a tool that generates SQL for you, such as a reporting tool, there may still be cases where you need to bypass the automatic generation feature and write your own SQL statements.To help you attain this fundamental SQL knowledge, look to "Learning SQL," an introductory guide to SQL, designed primarily for developers just cutting their teeth on the language."Learning SQL" moves you quickly through the basics and then on to some of the more commonly used advanced features. Among the topics discussed: The history of the computerized databaseSQL Data Statements--those used to create, manipulate, and retrieve data stored in your database; example statements include select, update, insert, and deleteSQL Schema Statements--those used to create database objects, such as tables, indexes, and constraintsHow data sets can interact with queriesThe importance of subqueriesData conversion and manipulation via SQL's built-in functionsHow conditional logic can be used in Data StatementsBest of all, "Learning SQL" talks to you in a real-world manner, discussing various platform differences that you're likely to encounter and offering a series of chapter exercises that walk you through the learning process. Whenever possible, the book sticks to the features included in the ANSI SQL standards. This means you'll be able to apply what you learn to any of several different databases; the book covers MySQL, Microsoft SQL Server, and Oracle Database, but the features and syntax should apply just as well (perhaps with some tweaking) to IBM DB2, Sybase Adaptive Server, and PostgreSQL.Put the power and flexibility of SQL to work. With "Learning SQL" you can master this important skill and know that the SQL statements you write are indeed correct.
Dataclysm: Who We Are (When We Think No One's Looking)
Christian Rudder - 2014
In Dataclysm, Christian Rudder uses it to show us who we truly are. For centuries, we’ve relied on polling or small-scale lab experiments to study human behavior. Today, a new approach is possible. As we live more of our lives online, researchers can finally observe us directly, in vast numbers, and without filters. Data scientists have become the new demographers. In this daring and original book, Rudder explains how Facebook "likes" can predict, with surprising accuracy, a person’s sexual orientation and even intelligence; how attractive women receive exponentially more interview requests; and why you must have haters to be hot. He charts the rise and fall of America’s most reviled word through Google Search and examines the new dynamics of collaborative rage on Twitter. He shows how people express themselves, both privately and publicly. What is the least Asian thing you can say? Do people bathe more in Vermont or New Jersey? What do black women think about Simon & Garfunkel? (Hint: they don’t think about Simon & Garfunkel.) Rudder also traces human migration over time, showing how groups of people move from certain small towns to the same big cities across the globe. And he grapples with the challenge of maintaining privacy in a world where these explorations are possible. Visually arresting and full of wit and insight, Dataclysm is a new way of seeing ourselves—a brilliant alchemy, in which math is made human and numbers become the narrative of our time.
Learning the bash Shell
Cameron Newham - 1995
This book will teach you how to use bash's advanced command-line features, such as command history, command-line editing, and command completion.This book also introduces shell programming,a skill no UNIX or Linus user should be without. The book demonstrates what you can do with bash's programming features. You'll learn about flow control, signal handling, and command-line processing and I/O. There is also a chapter on debugging your bash programs.Finally, Learning the bash Shell, Third Edition, shows you how to acquire, install, configure, and customize bash, and gives advice to system administrators managing bash for their user communities.This Third Edition covers all of the features of bash Version 3.0, while still applying to Versions 1.x and 2.x. It includes a debugger for the bash shell, both as an extended example and as a useful piece of working code. Since shell scripts are a significant part of many software projects, the book also discusses how to write maintainable shell scripts. And, of course, it discusses the many features that have been introduced to bash over the years: one-dimensional arrays, parameter expansion, pattern-matching operations, new commands, and security improvements.Unfailingly practical and packed with examples and questions for future study, Learning the bash Shell Third Edition is a valuable asset for Linux and other UNIX users.--back cover