Book picks similar to
Numbers: Rational and Irrational by Ivan Niven
mathematics
math
textbooks
location-mnlink
Proofs and Refutations: The Logic of Mathematical Discovery
Imre Lakatos - 1976
Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.
A Concise History of Mathematics
Dirk Jan Struik - 1948
Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.
Footballistics
James Coventry - 2018
The nature of football continually changes, which means its analysis must also keep pace. This book is for students, thinkers, and theorists of the game.'Ted Hopkins - Carlton premiership player, author, and co-founder of Champion Data. Australian Rules football has been described as the most data-rich sport on Earth. Every time and everywhere an AFL side takes to the field, it is shadowed by an army of statisticians and number crunchers. The information they gather has become the sport's new language and currency. ABC journalist James Coventry, author of the acclaimed Time and Space, has joined forces with a group of razor-sharp analysts to decipher the data, and to use it to question some of football's long-held truisms. Do umpires really favour the home side? Has goal kicking accuracy deteriorated? Is Geelong the true master of the draft? Are blonds unfairly favoured in Brownlow medal voting? And are Victorians the most passionate fans? Through a blend of entertaining storytelling and expert analysis, this book will answer more questions about footy than you ever thought to ask. Praise for Time and Space:'Brilliant, masterful' - The Guardian'Arguably one of the most important books yet written on Australian Rules football.' - Inside History'Should find its way into the hands of every coach.' - AFL Record
Linear Algebra and Its Applications [with CD-ROM]
David C. Lay - 1993
Conceptual Mathematics: A First Introduction to Categories
F. William Lawvere - 1997
Written by two of the best-known names in categorical logic, Conceptual Mathematics is the first book to apply categories to the most elementary mathematics. It thus serves two purposes: first, to provide a key to mathematics for the general reader or beginning student; and second, to furnish an easy introduction to categories for computer scientists, logicians, physicists, and linguists who want to gain some familiarity with the categorical method without initially committing themselves to extended study.
Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe
Amir D. Aczel - 2005
His apothegm "Cogito, ergo sum" marked the birth of the mind-body problem, while his creation of so-called Cartesian coordinates have made our physical and intellectual conquest of physical space possible.But Descartes had a mysterious and mystical side, as well. Almost certainly a member of the occult brotherhood of the Rosicrucians, he kept a secret notebook, now lost, most of which was written in code. After Descartes's death, Gottfried Leibniz, inventor of calculus and one of the greatest mathematicians in history, moved to Paris in search of this notebook--and eventually found it in the possession of Claude Clerselier, a friend of Descartes. Leibniz called on Clerselier and was allowed to copy only a couple of pages--which, though written in code, he amazingly deciphered there on the spot. Leibniz's hastily scribbled notes are all we have today of Descartes's notebook, which has disappeared.Why did Descartes keep a secret notebook, and what were its contents? The answers to these questions lead Amir Aczel and the reader on an exciting, swashbuckling journey, and offer a fascinating look at one of the great figures of Western culture.
Math on Trial: How Numbers Get Used and Abused in the Courtroom
Leila Schneps - 2013
Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.
Musimathics: The Mathematical Foundations of Music, Volume 1
Gareth Loy - 2006
In "Musimathics," Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music -- a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.In Volume 1, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Calling himself "a composer seduced into mathematics," Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The examples given are all practical problems in music and audio.Additional material can be found at http: //www.musimathics.com.
Cricut Expression: A Comprehensive Guide to Creating with Your Machine
Cathie Rigby - 2012
For advanced crafters, this book instructs on features such as modes and functions, and teaches how to create with color, texture, and dimension. A cutting guide teaches the perfect settings to cut every type of material. A separate chapter introduces the new features of Cricut Expression™ 2 and explains how it differs from the original Expression machine. More than 50 creative projects inspire ideas for home décor, gifts, parties, cards, and scrapbook layouts.
Schaum's Outline of Mathematical Economics
Edward T. Dowling - 1992
Students know that Schaum's delivers the goods—in faster learning curves,better test scores,and higher grades!If you don't have a lot of time but want to excel in class,this book helps you: Brush up before tests; Find answers fast; Study quickly and more effectively; Get the big picture without spending hours poring over dull texts Schaum's Outlines give you the information teachers expect you to know in a handy and succinct format—without overwhelming you with unnecessary details. You get a complete overview of the subject—and no distracting minutiae. Plus,you get plenty of practice exercises to test your skill. Compatible with any classroom text,Schaum's lets you study at your own pace and reminds you of all the important facts you need to remember—fast! And Schaum's is so complete it's the perfect tool for preparing for graduate or professional exams! Students of mathematical economics apply complex formulas—a challenging task that even the best students find daunting. But this Schaum's guide demystifies tough problems and gives you plenty of fully worked examples! Chapters include: Review. Economic Applications of Graphs and Equations. The Derivative and the Rules of Differentiation. Uses of the Derivative in Mathematics and Economics. Calculus of Multivariable Functions. Calculus of Multivariable Functions in Economics. Exponential and LogarithmicFunctions. Exponential and Logarithmic Functions in Economics. Differentiation of Exponential and Logarithmic Functions. The Fundamentals of Linear (or Matrix) Algebra. Matrix Inversion. Special Determinants and Matrices and Their Use in Economics. Linear Programming: A Graphic Approach. Linear Programming: The Simplex Algorithm. Linear Programming: The Dual. Integral Calculus: The Indefinite Integral. Integral Calculus: The Definite Integral. Differential Equations. Difference Equations. Second-Order Differential Equations and Difference Equations. The Calculus of Variations
The Mathematical Recreations of Lewis Carroll: Pillow Problems and a Tangled Tale
Lewis Carroll - 1893
L. Dodgson) have now been reprinted in their entirety for the pleasure of modern enthusiasts of mathematical puzzles. Written by the 19th-century mathematician who gave us Alice in Wonderland and Through the Looking Glass, they contain an unusual combination of wit and mathematical intricacy that will test your mathematical ingenuity and provide hours of stimulating entertainment.Pillow-Problems is one of the rarest of all Lewis Carroll's works. It contains 72 mathematical posers ranging from those that can be solved by arithmetic, simple algebra, or plane geometry, to those that require more advanced algebra, trigonometry, algebraical geometry, differential calculus, and transcendental probabilities. Both numerical answers and fully worked out solutions are given, each in a separate section so that you can test your methods of problem-solving even after you have looked up the answer to a problem.In A Tangled Tale, Carroll embodies some of his most perplexing mathematical puzzles in the ten knots or chapters of a delightful story that has all the charm and wit of his better-known works. The Tale was originally printed as a monthly magazine serial, and many readers sent in solutions to the problems that were posed in it. In the long Appendix to The Tale, which contains the answers and solutions to the problems, Carroll uses the answers sent in by readers as the basis for illuminating and entertaining discussions of the many wrong ways in which the problems can be attacked, as well as the right ways.
Fractals
John P. Briggs - 1992
Describes how fractals were discovered, explains their unique properties, and discusses the mathematical foundation of fractals.
Real and Complex Analysis
Walter Rudin - 1970
The basic techniques and theorems of analysis are presented in such a way that the intimate connections between its various branches are strongly emphasized. The traditionally separate subjects of 'real analysis' and 'complex analysis' are thus united in one volume. Some of the basic ideas from functional analysis are also included. This is the only book to take this unique approach. The third edition includes a new chapter on differentiation. Proofs of theorems presented in the book are concise and complete and many challenging exercises appear at the end of each chapter. The book is arranged so that each chapter builds upon the other, giving students a gradual understanding of the subject.This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.