Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

Automate This: How Algorithms Came to Rule Our World


Christopher Steiner - 2012
    It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What hap­pens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others?  Who knows—maybe there’s a bot learning to do your job this minute.

Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition


Dan Jurafsky - 2000
    This comprehensive work covers both statistical and symbolic approaches to language processing; it shows how they can be applied to important tasks such as speech recognition, spelling and grammar correction, information extraction, search engines, machine translation, and the creation of spoken-language dialog agents. The following distinguishing features make the text both an introduction to the field and an advanced reference guide.- UNIFIED AND COMPREHENSIVE COVERAGE OF THE FIELDCovers the fundamental algorithms of each field, whether proposed for spoken or written language, whether logical or statistical in origin.- EMPHASIS ON WEB AND OTHER PRACTICAL APPLICATIONSGives readers an understanding of how language-related algorithms can be applied to important real-world problems.- EMPHASIS ON SCIENTIFIC EVALUATIONOffers a description of how systems are evaluated with each problem domain.- EMPERICIST/STATISTICAL/MACHINE LEARNING APPROACHES TO LANGUAGE PROCESSINGCovers all the new statistical approaches, while still completely covering the earlier more structured and rule-based methods.

Calculus


Dale E. Varberg - 1999
    Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.

Bayes Theorem: A Visual Introduction For Beginners


Dan Morris - 2016
    Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.

How Data Science Is Transforming Health Care


Mike Loukides - 2012
    

Re:cyclists: 200 Years on Two Wheels


Michael Hutchinson - 2017
    The calls to ban it were more or less instant.Re:cyclists is the tale of what happened next, of how we have spent two centuries wheeling our way about town and country on bikes--or on two-wheeled things that vaguely resembled what we now call bikes. Michael Hutchinson picks his way through those 200 years, discovering how cycling became a kinky vaudeville act for Parisians, how it became an American business empire, and how it went on to find a unique home in the British Isles. He considers the penny-farthing riders exploring the abandoned and lonely coaching roads during the railway era, and the Victorian high-society cyclists of the 1890s bicycle craze--a time when no aristocratic house party was without bicycles and when the Prince of Wales used to give himself an illicit thrill on a weekday afternoon by watching the women's riding-school in the Royal Albert Hall.Re:cyclists looks at how cycling became the sport, the pastime and the social life of millions of ordinary people, how it grew and how it suffered through the 1960s and '70s, and how at the dawn of the twenty-first century it rose again, much changed but still ultimately just someone careering along on two wheels.

The Creativity Code: How AI Is Learning to Write, Paint and Think


Marcus du Sautoy - 2019
    They can navigate more data than a doctor or lawyer and act with greater precision. For many years we’ve taken solace in the notion that they can’t create. But now that algorithms can learn and adapt, does the future of creativity belong to machines, too?It is hard to imagine a better guide to the bewildering world of artificial intelligence than Marcus du Sautoy, a celebrated Oxford mathematician whose work on symmetry in the ninth dimension has taken him to the vertiginous edge of mathematical understanding. In The Creativity Code he considers what machine learning means for the future of creativity. The Pollockizer can produce drip paintings in the style of Jackson Pollock, Botnik spins off fanciful (if improbable) scenes inspired by J. K. Rowling, and the music-composing algorithm Emmy managed to fool a panel of Bach experts. But do these programs just mimic, or do they have what it takes to create? Du Sautoy argues that to answer this question, we need to understand how the algorithms that drive them work―and this brings him back to his own subject of mathematics, with its puzzles, constraints, and enticing possibilities.While most recent books on AI focus on the future of work, The Creativity Code moves us to the forefront of creative new technologies and offers a more positive and unexpected vision of our future cohabitation with machines. It challenges us to reconsider what it means to be human―and to crack the creativity code.

The R Book


Michael J. Crawley - 2007
    The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.

Calculus: The Classic Edition


Earl W. Swokowski - 1991
    Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.

C Programming: Language: A Step by Step Beginner's Guide to Learn C Programming in 7 Days


Darrel L. Graham - 2016
    It is a great book, not just for beginning programmers, but also for computer users who would want to have an idea what is happening behind the scenes as they work with various computer programs. In this book, you are going to learn what the C programming language entails, how to write conditions, expressions, statements and even commands, for the language to perform its functions efficiently. You will learn too how to organize relevant expressions so that after compilation and execution, the computer returns useful results and not error messages. Additionally, this book details the data types that you need for the C language and how to present it as well. Simply put, this is a book for programmers, learners taking other computer courses, and other computer users who would like to be versed with the workings of the most popular computer language, C. In this book You'll learn: What Is The C Language? Setting Up Your Local Environment The C Structure and Data Type C Constants and Literals C Storage Classes Making Decisions In C The Role Of Loops In C Programming Functions in C Programming Structures and Union in C Bit Fields and Typedef Within C. C Header Files and Type Casting Benefits Of Using The C Language ...and much more!! Download your copy today! click the BUY button and download it right now!

The Deep Learning Revolution


Terrence J. Sejnowski - 2018
    Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

Time Series Analysis


James Douglas Hamilton - 1994
    This book synthesizes these recent advances and makes them accessible to first-year graduate students. James Hamilton provides the first adequate text-book treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems (including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter) in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results.The book is intended to provide students and researchers with a self-contained survey of time series analysis. It starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.-- "Journal of Economics"

Digital Image Processing


Rafael C. Gonzalez - 1977
    Completely self-contained, heavily illustrated, and mathematically accessible, it has a scope of application that is not limited to the solution of specialized problems. Digital Image Fundamentals. Image Enhancement in the Spatial Domain. Image Enhancement in the Frequency Domain. Image Restoration. Color Image Processing. Wavelets and Multiresolution Processing. Image Compression. Morphological Image Processing. Image Segmentation. Representation and Description. Object Recognition.

Feature Engineering for Machine Learning


Alice Zheng - 2018
    With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.