Book picks similar to
Continuous Martingales and Brownian Motion by Daniel Revuz
math
mmath
probability
it-wikipedia
The Prince of Mathematics: Carl Friedrich Gauss
M.B.W. Tent - 2006
- predicted the reappearance of a lost planet, - discovered basic properties of magnetic forces, - invented a surveying tool used by professionals until the invention of lasers. Based on extensive research of original and secondary sources, this historical narrative will inspire young readers and even curious adults with its touching story of personal achievement.
Radiohead: Hysterical and Useless
Martin Clarke - 1999
Starting with the band's origins in Oxford, journalist Martin Clarke covers the essential points: Radiohead's breakout single "Creep," the pivotal album OK Computer, Thom Yorke's continuing political and artistic evolution, and the band's future. This revised edition includes a close look at how the band escaped the rock straightjacket with Kid A and Amnesiac , as well as their most recent album, Hail to the Thief . Clark also offers an in-depth examination of the outspoken, mysterious Yorke, offering insight into the personal demons the vocalist has battled throughout his career as Radiohead's frontman. An incisive look at one of the world's most beloved, followed musical acts, Radiohead: Hysterical and Useless provides stimulating coverage of a provocative group.
The Artist and the Mathematician: The Story of Nicolas Bourbaki, the Genius Mathematician Who Never Existed
Amir D. Aczel - 2006
Pure mathematics, the area of Bourbaki's work, seems on the surface to be an abstract field of human study with no direct connection with the real world. In reality, however, it is closely intertwined with the general culture that surrounds it. Major developments in mathematics have often followed important trends in popular culture; developments in mathematics have acted as harbingers of change in the surrounding human culture. The seeds of change, the beginnings of the revolution that swept the Western world in the early decades of the twentieth century — both in mathematics and in other areas — were sown late in the previous century. This is the story both of Bourbaki and the world that created him in that time. It is the story of an elaborate intellectual joke — because Bourbaki, one of the foremost mathematicians of his day — never existed.
Practical Algebra: A Self-Teaching Guide
Peter H. Selby - 1974
Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.
Schaum's Outline of Differential Equations
Richard Bronson - 2006
Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.
Building Thinking Classrooms in Mathematics, Grades K-12: 14 Teaching Practices for Enhancing Learning
Peter Liljedahl - 2020
Building Thinking Classrooms in Mathematics, Grades K-12
helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guideProvides the what, why, and how of each practice Includes firsthand accounts of how these practices foster thinking Offers a plethora of macro moves, micro moves, and rich tasks to get started
The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century
David Salsburg - 2001
At a summer tea party in Cambridge, England, a guest states that tea poured into milk tastes different from milk poured into tea. Her notion is shouted down by the scientific minds of the group. But one man, Ronald Fisher, proposes to scientifically test the hypothesis. There is no better person to conduct such an experiment, for Fisher is a pioneer in the field of statistics.The Lady Tasting Tea spotlights not only Fisher's theories but also the revolutionary ideas of dozens of men and women which affect our modern everyday lives. Writing with verve and wit, David Salsburg traces breakthroughs ranging from the rise and fall of Karl Pearson's theories to the methods of quality control that rebuilt postwar Japan's economy, including a pivotal early study on the capacity of a small beer cask at the Guinness brewing factory. Brimming with intriguing tidbits and colorful characters, The Lady Tasting Tea salutes the spirit of those who dared to look at the world in a new way.
Chance: The science and secrets of luck, randomness and probability (New Scientist)
Michael Brooks - 2015
So it's not surprising that we persist in thinking that we're in with a chance, whether we're playing the lottery or working out the likelihood of extra-terrestrial life. In Chance, a (not entirely) random selection of the New Scientist's sharpest minds provide fascinating insights into luck, randomness, risk and probability. From the secrets of coincidence to placing the perfect bet, the science of random number generation to the surprisingly haphazard decisions of criminal juries, it will explore these, and many other, tantalising questions.Following on from the bestselling Nothing and Question Everything, this book will open your eyes to the weird and wonderful world of chance - and help you see when some things, in fact, aren't random at all.
The Art of Statistics: How to Learn from Data
David Spiegelhalter - 2019
Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.
Uncle Petros and Goldbach's Conjecture: A Novel of Mathematical Obsession
Apostolos Doxiadis - 1992
His feverish and singular pursuit of this goal has come to define his life. Now an old man, he is looked on with suspicion and shame by his family-until his ambitious young nephew intervenes.Seeking to understand his uncle's mysterious mind, the narrator of this novel unravels his story, a dramatic tale set against a tableau of brilliant historical figures-among them G. H. Hardy, the self-taught Indian genius Srinivasa Ramanujan, and a young Kurt Gödel. Meanwhile, as Petros recounts his own life's work, a bond is formed between uncle and nephew, pulling each one deeper into mathematical obsession, and risking both of their sanity.
Schaum's Outline of Discrete Mathematics (Schaum's Outline Series)
Seymour Lipschutz - 2009
More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
The Art of Mathematics
Jerry P. King - 1992
Jerry King is no exception. His informal, nontechnical book, as its title implies, is organized around what Bertrand Russell called the 'supreme beauty' of mathematics--a beauty 'capable of a stern perfection such as only the greatest art can show.'NATUREIn this clear, concise, and superbly written volume, mathematics professor and poet Jerry P. King reveals the beauty that is at the heart of mathematics--and he makes that beauty accessible to all readers. Darting wittily from Euclid to Yeats, from Poincare to Rembrandt, from axioms to symphonies, THE ART OF MATHEMATICS explores the difference between real, rational, and complex numbers; analyzes the intellectual underpinnings of pure and applied mathematics; and reveals the fundamental connection between aesthetics and mathematics. King also sheds light on how mathematicians pursue their research and how our educational system perpetuates the damaging divisions between the two cultures.
Lectures on the Foundations of Mathematics, Cambridge 1939
Ludwig Wittgenstein - 1989
A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.
A Textbook of Engineering Mathematics
N.P. Bali - 2010
The salient features of the book are as follows: It exactly covers the prescribed syllabus. Nothing undesirable has been included and nothing essential has been left. Its approach is explanatory and language is lucid and communicable. The exposition of the subject matter is systematic and the students are better prepared to solve the problems. All fundamentals of the included topics are explained with a micro-analysis. Sufficient number of solved examples have been given to let the students understand the various skills necessary to solve the problems. These examples are well-graded. Unsolved exercises of multi-varieties have been given in a well-graded style. Attempting those on his own, will enable a student to create confidence and independence in him/her regarding the understanding of the subject. Daily life problems and practical applications have been incorporated in the body of the text. A large number of attractive and accurate figures have been drawn which enable a student to grasp the subject in an easier way. All the answers have been checked and verified. About The Author: N.P. Bali is a prolific author of over 100 books for degree and engineering students. He has been writing books for more than forty years. His books on the following topics are well known for their easy comprehension and lucid presentation: Algebra, Trigonometry, Differential Calculus, Integral Calculus, Real Analysis, Co-ordinate Geometry, Statics, Dynamics etc. Dr. Manish Goyal has been associated with
The Number Devil: A Mathematical Adventure
Hans Magnus Enzensberger - 1997
As we dream with him, we are taken further and further into mathematical theory, where ideas eventually take flight, until everyone--from those who fumble over fractions to those who solve complex equations in their heads--winds up marveling at what numbers can do.Hans Magnus Enzensberger is a true polymath, the kind of superb intellectual who loves thinking and marshals all of his charm and wit to share his passions with the world. In The Number Devil, he brings together the surreal logic of Alice in Wonderland and the existential geometry of Flatland with the kind of math everyone would love, if only they had a number devil to teach them.