Book picks similar to
Mathematical Miniatures by Titu Andreescu
math
mathematics
myne
next-one
Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)
Michael H. Kutner - 2003
Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.
Calculus [with CD]
Howard Anton - 1992
New co-authors--Irl Bivens and Stephen Davis--from Davidson College; both distinguished educators and writers.* More emphasis on graphing calculators in exercises and examples, including CAS capabilities of graphing calculators.* More problems using tabular data and more emphasis on mathematical modeling.
The 85 ways to tie a tie: the science and aesthetics of tie knots
Thomas Fink - 1999
Tie Knots unravels the history of ties, the story of the discovery of the new knots and some very elegant mathematics in action. If Einstein had been left alone in Tie Rack for long enough perhaps he would have worked it out : why do people tie their ties in only 4 ways? And how many other possibilities are there? Two Cambridge University physicists, research fellows working from the Cavendish laboratories, have discovered via a recherche branch of mathematics - knot theory - that although only four knots are traditionally used in tying neck ties another 81 exist. This is the story of their discovery, of the history of neck ties and of the equations that express whether a tie is handsome or not. Of the 81 new knots, 6 are practical and elegant. We now have somewhere else to go after the Pratt, the Four-in-Hand, the Full and Half Windsor. Sartorial stylishness is wrapped effortlessly around popular mathematics. A concept developed to describe the movement of gas molecules - the notion of persistent walks around a triangular lattice - also describes the options for tie tying. Pure maths becomes pure fashion in a delightfully designed little package from Fourth Estate.
Elliptic Tales: Curves, Counting, and Number Theory
Avner Ash - 2012
The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.
Calculus: Early Transcendental Functions
Ron Larson - 1900
Two primary objectives guided the authors in the revision of this book: to develop precise, readable materials for students that clearly define and demonstrate concepts and rules of calculus; and to design comprehensive teaching resources for instructors that employ proven pedagogical techniques and save time. The Larson/Hostetler/Edwards Calculus program offers a solution to address the needs of any calculus course and any level of calculus student. Every edition from the first to the fourth of Calculus: Early Transcendental Functions, 4/e has made the mastery of traditional calculus skills a priority, while embracing the best features of new technology and, when appropriate, calculus reform ideas. Now, the Fourth Edition is part of the first calculus program to offer algorithmic homework and testing created in Maple so that answers can be evaluated with complete mathematical accuracy.
Introduction to Statistical Quality Control
Douglas C. Montgomery - 1985
It provides comprehensive coverage of the subject from basic principles to state-of-art concepts and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of both product and nonproduct situations. While statistical techniques are emphasized throughout, the book has a strong engineering and management orientation. Guidelines are given throughout the book for selecting the proper type of statistical technique to use in a wide variety of product and nonproduct situations. By presenting theory, and supporting the theory with clear and relevant examples, Montgomery helps the reader to understand the big picture of important concepts. Updated to reflect contemporary practice and provide more information on management aspects of quality improvement.
Sacred Number: The Secret Quality of Quantities
Miranda Lundy - 2005
Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.
Mathematics With Applications in Management and Economics/Solutions Manual
Earl K. Bowen - 1987
Principles to Actions: Ensuring Mathematical Success for All
National Council of Teachers of Mathematics - 2014
What will it take to turn this opportunity into reality in every classroom, school, and district? Continuing its tradition of mathematics education leadership, NCTM has defined and described the principles and actions, including specific teaching practices, that are essential for a high-quality mathematics education for all students. Principles to Actions: Ensuring Mathematical Success for All offers guidance to teachers, specialists, coaches, administrators, policymakers, and parents: Builds on the Principles articulated in Principles and Standards for School Mathematics to present six updated Guiding Principles for School MathematicsSupports the first Guiding Principle, Teaching and Learning, with eight essential, research-based Mathematics Teaching PracticesDetails the five remaining Principles--the Essential Elements that support Teaching and Learning as embodied in the Mathematics Teaching PracticesIdentifies obstacles and unproductive and productive beliefs that all stakeholders must recognize, as well as the teacher and student actions that characterize effective teaching and learning aligned with the Mathematics Teaching PracticesWith Principles to Actions, NCTM takes the next step in shaping the development of high-quality standards throughout the United States, Canada, and worldwide.
Cosmic Numbers: The Numbers That Define Our Universe
James D. Stein - 2011
We start counting our fingers and toes and end up balancing checkbooks and calculating risk. So powerful is the appeal of numbers that many people ascribe to them a mystical significance. Other numbers go beyond the supernatural, working to explain our universe and how it behaves. In Cosmic Numbers, mathematics professor James D. Stein traces the discovery, evolution, and interrelationships of the numbers that define our world. Everyone knows about the speed of light and absolute zero, but numbers like Boltzmann’s constant and the Chandrasekhar limit are not as well known, and they do far more than one might imagine: They tell us how this world began and what the future holds. Much more than a gee-whiz collection of facts and figures, Cosmic Numbers illuminates why particular numbers are so importantboth to the scientist and to the rest of us.
Win Shares
Bill James - 2002
James' latest advancement in the world of statistical analysis is the next big stepping-stone in the "greatest players of all-time" debate. For as long as baseball has been played, fans have struggled to compare the legends of the game with today's stars. Win Shares by Decade is just one of the many sections you'll find inside to help you judge who ranks where among the pantheon of baseball greats.
The Unreasonable Effectiveness of Mathematics in the Natural Sciences
Eugene Paul Wigner - 1959
In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.
How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)
New Scientist - 2018
No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
My Best Mathematical and Logic Puzzles
Martin Gardner - 1994
He was especially careful to present new and unfamiliar puzzles that had not been included in such classic collections as those by Sam Loyd and Henry Dudeney. Later, these puzzles were published in book collections, incorporating reader feedback on alternate solutions or interesting generalizations.The present volume contains a rich selection of 70 of the best of these brain teasers, in some cases including references to new developments related to the puzzle. Now enthusiasts can challenge their solving skills and rattle their egos with such stimulating mind-benders as The Returning Explorer, The Mutilated Chessboard, Scrambled Box Tops, The Fork in the Road, Bronx vs. Brooklyn, Touching Cigarettes, and 64 other problems involving logic and basic math. Solutions are included.