Mastering Emacs


Mickey Petersen - 2015
    In the Mastering Emacs ebook you will learn the answers to all the concepts that take weeks, months or even years to truly learn, all in one place.“Emacs is such a hard editor to learn”But why is it so hard to learn? As it turns out, it's almost always the same handful of issues that everyone faces.If you have tried to learn Emacs you will have struggled with the same problems everyone faces, and few tutorials to see you through it.I have dedicated the first half of the book to explaining the essence of Emacs — and in doing so, how to overcome these issues:Memorizing Emacs’s keys: You will learn Emacs one key at a time, starting with the arrow keys. To feel productive in Emacs, it’s important you start on an equal footing — without too many new concepts and keys to memorize. Each chapter will introduce more keys and concepts so you can learn at your own pace. Discovering new modes and features: Emacs is a self-documenting editor, and I will teach you how to use the apropos, info, and describe system to discover new modes and features, or help you find things you forgot! Customizing Emacs: You don’t have to learn Emacs Lisp to alter a lot of Emacs’s functionality. Most changes you want to make are possible using Emacs’s Customize interface and I will show you how to use it efficiently. Understanding the terminology: Emacs is so old it predates almost every other editor and all modern user interfaces. I have an entire chapter dedicated to the unique terminology in Emacs; how it is different from other editors, and what that means to you.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

Running Linux


Matthias Kalle Dalheimer - 2005
    Matt Welsh wrote the original Linux Installation and Getting Started guide; Matthias Dalheimer now leads the KDE Foundation. Their knowledge shows, whether they re talking about system administration, multimedia, or programming. You ll start by getting comfortable and productive: navigating command lines and GUIs; using browsers and office software; even gaming. Then, the authors lead you into the heart of Linux. You ll build kernels, process text, manage startup, troubleshoot X Window video. You ll implement print, file, network, and Internet services. There s even a full chapter on building LAMP application environments. Along the way, the authors introduce a raft of new topics, from encrypted email to groupware -- all with the clarity and accuracy you need to get results. Bill Camarda, from the February 2006 href="http://www.barnesandnoble.com/newslet... Only

Data Science at the Command Line: Facing the Future with Time-Tested Tools


Jeroen Janssens - 2014
    You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

Design Patterns: Elements of Reusable Object-Oriented Software


Erich Gamma - 1994
    Previously undocumented, these 23 patterns allow designers to create more flexible, elegant, and ultimately reusable designs without having to rediscover the design solutions themselves.The authors begin by describing what patterns are and how they can help you design object-oriented software. They then go on to systematically name, explain, evaluate, and catalog recurring designs in object-oriented systems. With Design Patterns as your guide, you will learn how these important patterns fit into the software development process, and how you can leverage them to solve your own design problems most efficiently. Each pattern describes the circumstances in which it is applicable, when it can be applied in view of other design constraints, and the consequences and trade-offs of using the pattern within a larger design. All patterns are compiled from real systems and are based on real-world examples. Each pattern also includes code that demonstrates how it may be implemented in object-oriented programming languages like C++ or Smalltalk.

Raspberry Pi Cookbook


Simon Monk - 2013
    In this cookbook, prolific hacker and author Simon Monk provides more than 200 practical recipes for running this tiny low-cost computer with Linux, programming it with Python, and hooking up sensors, motors, and other hardware—including Arduino.You’ll also learn basic principles to help you use new technologies with Raspberry Pi as its ecosystem develops. Python and other code examples from the book are available on GitHub. This cookbook is ideal for programmers and hobbyists familiar with the Pi through resources such as Getting Started with Raspberry Pi (O’Reilly).Set up and manage your Raspberry PiConnect the Pi to a networkWork with its Linux-based operating systemUse the Pi’s ready-made softwareProgram Raspberry Pi with PythonControl hardware through the GPIO connectorUse Raspberry Pi to run different types of motorsWork with switches, keypads, and other digital inputsHook up sensors for taking various measurementsAttach different displays, such as an LED matrixCreate dynamic projects with Raspberry Pi and Arduino Make sure to check out 10 of the over 60 video recipes for this book at: http://razzpisampler.oreilly.com/ You can purchase all recipes at:

Cloud Native Infrastructure: Patterns for Scalable Infrastructure and Applications in a Dynamic Environment


Justin Garrison - 2017
    This practical guide shows you how to design and maintain infrastructure capable of managing the full lifecycle of these implementations.Engineers Justin Garrison (Walt Disney Animation Studios) and Kris Nova (Dies, Inc.) reveal hard-earned lessons on architecting infrastructure for massive scale and best in class monitoring, alerting, and troubleshooting. The authors focus on Cloud Native Computing Foundation projects and explain where each is crucial to managing modern applications.Understand the fundamentals of cloud native application design, and how it differs from traditional application designLearn how cloud native infrastructure is different from traditional infrastructureManage application lifecycles running on cloud native infrastructure, using Kubernetes for application deployment, scaling, and upgradesMonitor cloud native infrastructure and applications, using fluentd for logging and prometheus + graphana for visualizing dataDebug running applications and learn how to trace a distributed application and dig deep into a running system with OpenTracing

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Parallel and Concurrent Programming in Haskell: Techniques for Multicore and Multithreaded Programming


Simon Marlow - 2013
    You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions.Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented:Express parallelism in Haskell with the Eval monad and Evaluation StrategiesParallelize ordinary Haskell code with the Par monadBuild parallel array-based computations, using the Repa libraryUse the Accelerate library to run computations directly on the GPUWork with basic interfaces for writing concurrent codeBuild trees of threads for larger and more complex programsLearn how to build high-speed concurrent network serversWrite distributed programs that run on multiple machines in a network

You Don't Know JS: Up & Going


Kyle Simpson - 2015
    With the "You Don’t Know JS" book series, you’ll get a more complete understanding of JavaScript, including trickier parts of the language that many experienced JavaScript programmers simply avoid.The series’ first book, Up & Going, provides the necessary background for those of you with limited programming experience. By learning the basic building blocks of programming, as well as JavaScript’s core mechanisms, you’ll be prepared to dive into the other, more in-depth books in the series—and be well on your way toward true JavaScript.With this book you will: Learn the essential programming building blocks, including operators, types, variables, conditionals, loops, and functions Become familiar with JavaScript's core mechanisms such as values, function closures, this, and prototypes Get an overview of other books in the series—and learn why it’s important to understand all parts of JavaScript

Effective C++: 55 Specific Ways to Improve Your Programs and Designs


Scott Meyers - 1991
    But the state-of-the-art has moved forward dramatically since Meyers last updated this book in 1997. (For instance, there s now STL. Design patterns. Even new functionality being added through TR1 and Boost.) So Meyers has done a top-to-bottom rewrite, identifying the 55 most valuable techniques you need now to be exceptionally effective with C++. Over half of this edition s content is new. Templates broadly impact C++ development, and you ll find them everywhere. There s extensive coverage of multithreaded systems. There s an entirely new chapter on resource management. You ll find substantial new coverage of exceptions. Much is gained, but nothing s lost: You ll find the same depth of practical insight that first made Effective C++ a classic all those years ago. Bill Camarda, from the July 2005 href="http://www.barnesandnoble.com/newslet... Only

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

Java Network Programming


Elliotte Rusty Harold - 1997
    It is a clear, complete introduction to developing network programs (both applets and applications) using Java, covering everything from networking fundamentals to remote method invocation (RMI). Java Network Programming, 3rd Edition includes chapters on TCP and UDP sockets, multicasting protocol and content handlers, servlets, multithreaded network programming, I/O, HTML parsing and display, the Java Mail API, and the Java Secure Sockets Extension. There's also significant information on the New I/O API that was developed in large part because of the needs of network programmers. This invaluable book is a complete, single source guide to writing sophisticated network applications. Packed with useful examples, it is the essential resource for any serious Java developer.

Site Reliability Engineering: How Google Runs Production Systems


Betsy Beyer - 2016
    So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems?In this collection of essays and articles, key members of Google's Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You'll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient--lessons directly applicable to your organization.This book is divided into four sections: Introduction--Learn what site reliability engineering is and why it differs from conventional IT industry practicesPrinciples--Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE)Practices--Understand the theory and practice of an SRE's day-to-day work: building and operating large distributed computing systemsManagement--Explore Google's best practices for training, communication, and meetings that your organization can use