The Many Worlds of Hugh Everett III: Multiple Universes, Mutual Assured Destruction, and the Meltdown of a Nuclear Family


Peter Byrne - 2010
    Using Everett's unpublished papers (recently discovered in his son's basement) and dozens of interviews with his friends, colleagues, and surviving family members, Byrne paints, for the general reader, a detailed portrait of the genius who invented an astonishing way of describing our complex universe from the inside. Everett's mathematical model (called the "universal wave function") treats all possible events as "equally real," and concludes that countless copies of every person and thing exist in all possible configurations spread over an infinity of universes: many worlds. Afflicted by depression and addictions, Everett strove to bring rational order to the professional realms in which he played historically significant roles. In addition to his famous interpretation of quantum mechanics, Everett wrote a classic paper in game theory; created computer algorithms that revolutionized military operations research; and performed pioneering work in artificial intelligence for top secret government projects. He wrote the original software for targeting cities in a nuclear hot war; and he was one of the first scientists to recognize the danger of nuclear winter. As a Cold Warrior, he designed logical systems that modeled "rational" human and machine behaviors, and yet he was largely oblivious to the emotional damage his irrational personal behavior inflicted upon his family, lovers, and business partners. He died young, but left behind a fascinating record of his life, including correspondence with such philosophically inclined physicists as Niels Bohr, Norbert Wiener, and John Wheeler. These remarkable letters illuminate the long and often bitter struggle to explain the paradox of measurement at the heart of quantum physics. In recent years, Everett's solution to this mysterious problem-the existence of a universe of universes-has gained considerable traction in scientific circles, not as science fiction, but as an explanation of physical reality.

Radiation: What It Is, What You Need to Know


Robert Peter Gale - 2013
    Earth, born in a nuclear explosion, is a radioactive planet; without radiation, life would not exist. And while radiation can be dangerous, it is also deeply misunderstood and often mistakenly feared. Now Robert Peter Gale, M.D,—the doctor to whom concerned governments turned in the wake of the Chernobyl and Fukushima disasters—in collaboration with medical writer Eric Lax draws on an exceptional depth of knowledge to correct myths and establish facts. Exploring what have become trigger words for anxiety—nuclear energy and nuclear weapons, uranium, plutonium, iodine-131, mammogram, X-ray, CT scan, threats to the food chain—the authors demystify the science and dangers of radiation, and examine its myriad benefits, from safely sterilizing our food to the relatively low-risk fuel alternative of nuclear energy. This is the book for all readers who have asked themselves questions such as: What kinds of radiation, and what degree of exposure, cause cancer? What aftereffects have nuclear accidents and bombs had? Does radiation increase the likelihood of birth defects? And how does radiation work? Hugely illuminating, Radiation is the definitive road map to our post-Chernobyl, post-Fukushima world.

Taking the Quantum Leap: The New Physics for Nonscientists


Fred Alan Wolf - 1981
    This humanized view of science opens up the mind-stretching visions of how quantum mechanics, God, human thought, and will are related, and provides profound implications for our understanding of the nature of reality and our relationship to the cosmos.

Periodic Tales: The Curious Lives of the Elements


Hugh Aldersey-Williams - 2011
    Like you, the elements have lives: personalities and attitudes, talents and shortcomings, stories rich with meaning. You may think of them as the inscrutable letters of the periodic table but you know them much better than you realise. Welcome to a dazzling tour through history and literature, science and art. Here you'll meet iron that rains from the heavens and noble gases that light the way to vice. You'll learn how lead can tell your future while zinc may one day line your coffin. You'll discover what connects the bones in your body with the Whitehouse in Washington, the glow of a streetlamp with the salt on your dinner table. From ancient civilisations to contemporary culture, from the oxygen of publicity to the phosphorus in your pee, the elements are near and far and all around us. Unlocking their astonishing secrets and colourful pasts, Periodic Tales will take you on a voyage of wonder and discovery, excitement and novelty, beauty and truth. Along the way, you'll find that their stories are our stories, and their lives are inextricable from our own.

The Cambridge Quintet: A Work Of Scientific Speculation


John L. Casti - 1997
    Casti contemplates an imaginary evening of intellectual inquiry—a sort of “My Dinner with” not Andre, but five of the most brilliant thinkers of the twentieth century.Imagine, if you will, one stormy summer evening in 1949, as novelist and scientist C. P. Snow, Britain’s distinguished wartime science advisor and author of The Two Cultures, invites four singular guests to a sumptuous seven-course dinner at his alma mater, Christ’s College, Cambridge, to discuss one of the emerging scientific issues of the day: Can we build a machine that could duplicate human cognitive processes? The distinguished guest list for Snow’s dinner consists of physicist Erwin Schrodinger, inventor of wave mechanics; Ludwig Wittgenstein, the famous twentieth-century philosopher of language, who posited two completely contradictory theories of human thought in his lifetime; population geneticist/science popularizer J.B.S. Haldane; and Alan Turing, the mathematician/codebreaker who formulated the computing scheme that foreshadowed the logical structure of all modern computers. Capturing not only their unique personalities but also their particular stands on this fascinating issue, Casti dramatically shows what each of these great men might have argued about artificial intelligence, had they actually gathered for dinner that midsummer evening.With Snow acting as referee, a lively intellectual debate unfolds. Philosopher Wittgenstein argues that in order to become conscious, a machine would have to have life experiences similar to those of human beings—such as pain, joy, grief, or pleasure. Biologist Haldane offers the idea that mind is a separate entity from matter, so that regardless of how sophisticated the machine, only flesh can bond with that mysterious force called intelligence. Both physicist Schrodinger and, of course, computer pioneer Turing maintain that it is not the substance, but rather the organization of that substance, that makes a mind conscious.With great verve and skill, Casti recreates a unique and thrilling moment of time in the grand history of scientific ideas. Even readers who have already formed an opinion on artificial intelligence will be forced to reopen their minds on the subject upon reading this absorbing narrative. After almost four decades, the solutions to the epic scientific and philosophical problems posed over this meal in C. P. Snow’s old rooms at Christ’s College remains tantalizingly just out of reach, making this adventure into scientific speculation as valid today as it was in 1949.

Introducing Relativity: A Graphic Guide


Bruce Bassett - 2002
    Beginning near the speed of light and proceeding to explorations of space-time and curved spaces, "Introducing Relativity" plots a visually accessible course through the thought experiments that have given shape to contemporary physics. Scientists from Newton to Hawking add their unique contributions to this story, as we encounter Einstein's astounding vision of gravity as the curvature of space-time and arrive at the breathtakingly beautiful field equations. Einstein's legacy is reviewed in the most advanced frontiers of physics today - black holes, gravitational waves, the accelerating universe and string theory. This is a superlative, fascinating graphic account of Einstein's strange world and how his legacy has been built upon since.

Why Does E=mc²? (And Why Should We Care?)


Brian Cox - 2009
    Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass.Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

From Eternity to Here: The Quest for the Ultimate Theory of Time


Sean Carroll - 2009
    In the hands of one of today’s hottest young physicists, that simple fact of breakfast becomes a doorway to understanding the Big Bang, the universe, and other universes, too. In From Eternity to Here, Sean Carroll argues that the arrow of time, pointing resolutely from the past to the future, owes its existence to conditions before the Big Bang itself, a period modern cosmology of which Einstein never dreamed. Increasingly, though, physicists are going out into realms that make the theory of relativity seem like child’s play. Carroll’s scenario is not only elegant, it’s laid out in the same easy-to- understand language that has made his group blog, Cosmic Variance, the most popular physics blog on the Net. From Eternity to Here uses ideas at the cutting edge of theoretical physics to explore how properties of spacetime before the Big Bang can explain the flow of time we experience in our everyday lives. Carroll suggests that we live in a baby universe, part of a large family of universes in which many of our siblings experience an arrow of time running in the opposite direction. It’s an ambitious, fascinating picture of the universe on an ultra-large scale, one that will captivate fans of popular physics blockbusters like Elegant Universe and A Brief History of Time.

Einstein's Theory of Relativity


Max Born - 1962
    This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics


Clifford A. Pickover - 2009
    Beginning millions of years ago with ancient “ant odometers” and moving through time to our modern-day quest for new dimensions, it covers 250 milestones in mathematical history. Among the numerous delights readers will learn about as they dip into this inviting anthology: cicada-generated prime numbers, magic squares from centuries ago, the discovery of pi and calculus, and the butterfly effect. Each topic gets a lavishly illustrated spread with stunning color art, along with formulas and concepts, fascinating facts about scientists’ lives, and real-world applications of the theorems.

Quantum Theory Cannot Hurt You


Marcus Chown - 2005
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realise that 1 percent of the static on a TV tuned between stations is a relic of the Big Bang?

Solid State Physics


Neil W. Ashcroft - 1976
    This book provides an introduction to the field of solid state physics for undergraduate students in physics, chemistry, engineering, and materials science.

There Are No Electrons: Electronics for Earthlings


Kenn Amdahl - 1991
    Despite its title, it's not wild ranting pseudo-science to be dismissed by those with brains. Rather, Amdahl maintains that one need not understand quantum physics to grasp how electricity works in practical applications. To understand your toaster or your fax machine, it doesn't really matter whether there are electrons or not, and it's a lot easier and more fun to start with the toaster than with quarks and calculus. The book is mildly weird, often funny, always clear and easy to understand. It assumes the reader doesn't know a volt from a hole in the ground and gently leads him or her through integrated circuits, radio, oscillators and the basics of the digital revolution using examples that include green buffalo, microscopic beer parties, break-dancing chickens and naked Norwegian girls in rowboats. OK, it's more than mildly weird.The book has been reprinted numerous times since 1991 and has achieved minor cult status. Reviewed and praised in dozens of electronics and educational magazines, it is used as a text by major corporations, colleges, high schools, military schools and trade schools. It has been studied by education programs at colleges across the United States. This book was making wise cracks in the corner before anyone thought of designing books for dummies and idiots; some say it helped to inspire that industry.It may be the only "introduction to electronics books" with back cover comments by Dave Barry, Ray Bradbury, Clive Cussler, and George Garrett, as well as recomendations from Robert Hazen, Bob Mostafapour, Dr. Roger Young, Dr. Wayne Green, Scott Rundle, Brian Battles, Michelle Guido, Herb Reichert and Emil Venere. As Monitoring Times said, "Perhaps the best electronics book ever. If you'd like to learn about basic electronics but haven't been able to pull it off, get There Are No Electrons. Just trust us. Get the book."

The Ascent of Science


Brian L. Silver - 1990
    Silver translates our most important, and often most obscure, scientific developments into a vernacular that is not only accessible and illuminating but also enjoyable. Silver makes his comprehensive case with much clarity and insight; his book aptly locates science as the apex of human reason, and reason as our best path to the truth. For all readers curious about--or else perhaps intimidated by--what Silver calls the scientific campaign up to now in his Preface, The Ascent of Science will be fresh, vivid, and fascinating reading.