Book picks similar to
From X Rays To Quarks: Modern Physicists And Their Discoveries by Emilio Segrè
physics
science
history
non-fiction
Universe on A T-Shirt: The Quest for the Theory of Everything
Dan Falk - 2002
- This is the best kind of popular science: informed, impassioned, and highly accessible.- Compare it to Stephen Hawking's The Universe in a Nutshell, but broader in scope and much more readable.- A crossover for the Young Adult market, now in the perfect format.
Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter - 1979
However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.
The Beginning of Infinity: Explanations That Transform the World
David Deutsch - 2011
Taking us on a journey through every fundamental field of science, as well as the history of civilization, art, moral values, and the theory of political institutions, Deutsch tracks how we form new explanations and drop bad ones, explaining the conditions under which progress—which he argues is potentially boundless—can and cannot happen. Hugely ambitious and highly original, The Beginning of Infinity explores and establishes deep connections between the laws of nature, the human condition, knowledge, and the possibility for progress.
James Clerk Maxwell: A Life from Beginning to End (Scottish History Book 4)
Hourly History - 2019
Free BONUS Inside! James Clerk Maxwell was a brilliant mathematician and scientist, but his impact on this world goes even deeper than that. Maxwell singlehandedly overturned what was believed to be fact with a whole new outlook on fundamental aspects of the universe. Maxwell is often credited as one of the first pioneers of quantum physics and rightly so because it was Maxwell who envisioned particles such as electrons spinning inside an electric current before anyone else had so much as guessed that such a thing might be possible. The rarefied scientific mind of James Clerk Maxwell has left us with a lasting legacy of incredible innovations in thought that still affect us to this very day. Read this book in order to get a full grasp of just what kind of enlightening fire this nineteenth-century Prometheus has gifted all of humanity with. Discover a plethora of topics such as
Early Life and Loss
The World’s First Color Photograph
Maxwell’s Equations
The Cavendish Laboratory
Illness and Death
And much more!
So if you want a straightforward book on James Clerk Maxwell, simply scroll up and click the "Buy now" button for instant access!
Black Holes & Time Warps: Einstein's Outrageous Legacy
Kip S. Thorne - 1994
In this masterfully written and brilliantly informed work of scientific history and explanation, Dr. Thorne, the Feynman Professor of Theoretical Physics at Caltech, leads his readers through an elegant, always human, tapestry of interlocking themes, coming finally to a uniquely informed answer to the great question: what principles control our universe and why do physicists think they know the things they think they know? Stephen Hawking's A Brief History of Time has been one of the greatest best-sellers in publishing history. Anyone who struggled with that book will find here a more slowly paced but equally mind-stretching experience, with the added fascination of a rich historical and human component.
A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity
Peter Collier - 2012
This user-friendly self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. The book is written using straightforward and accessible language, with clear derivations and explanations as well as numerous fully solved problems. For those with minimal mathematical background, the first chapter provides a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes and relativistic cosmology. Following the historic 2015 LIGO (Laser Interferometer Gravitational-Wave Observatory) detection, there is now an additional chapter on gravitational waves, ripples in the fabric of spacetime that potentially provide a revolutionary new way to study the universe. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes.Understand even the basics of Einstein's amazing theory and the world will never seem the same again. ContentsPrefaceIntroduction1 Foundation mathematics2 Newtonian mechanics3 Special relativity4 Introducing the manifold5 Scalars, vectors, one-forms and tensors6 More on curvature7 General relativity8 The Newtonian limit9 The Schwarzschild metric10 Schwarzschild black holes11 Cosmology12 Gravitational wavesAppendix: The Riemann curvature tensorBibliographyAcknowledgementsJanuary 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.
This Explains Everything: Deep, Beautiful, and Elegant Theories of How the World Works
John BrockmanSean Carroll - 2013
Why do we recognize patterns? Is there such a thing as positive stress? Are we genetically programmed to be in conflict with each other? Those are just some of the 150 questions that the world's best scientific minds answer with elegant simplicity.With contributions from Jared Diamond, Richard Dawkins, Nassim Taleb, Brian Eno, Steven Pinker, and more, everything is explained in fun, uncomplicated terms that make the most complex concepts easy to comprehend.
First Light: Switching on Stars at the Dawn of Time
Emma Chapman - 2020
There's a lot for astronomers to be smug about. But when it comes to understanding how the Universe began and grew up we are literally in the dark ages. In effect, we are missing the first one billion years from the timeline of the Universe.This brief but far-reaching period in the Universe's history, known to astrophysicists as the 'Epoch of Reionisation', represents the start of the cosmos as we experience it today. The time when the very first stars burst into life, when darkness gave way to light. After hundreds of millions of years of dark, uneventful expansion, one by the one these stars suddenly came into being. This was the point at which the chaos of the Big Bang first began to yield to the order of galaxies, black holes and stars, kick-starting the pathway to planets, to comets, to moons, and to life itself.Incorporating the very latest research into this branch of astrophysics, this book sheds light on this time of darkness, telling the story of these first stars, hundreds of times the size of the Sun and a million times brighter, lonely giants that lived fast and died young in powerful explosions that seeded the Universe with the heavy elements that we are made of. Emma Chapman tells us how these stars formed, why they were so unusual, and what they can teach us about the Universe today. She also offers a first-hand look at the immense telescopes about to come on line to peer into the past, searching for the echoes and footprints of these stars, to take this period in the Universe's history from the realm of theoretical physics towards the wonder of observational astronomy.
Quantum Physics for Beginners in 90 Minutes without Math: All the Major Ideas of Quantum Mechanics, from Quanta to Entanglement, in Simple Language
Modern Science - 2017
This behavior is very much different from what we humans are used to dealing with in our everyday lives, so naturally this subject is quite hard to comprehend for many. We believed that the best way to introduce the subject reliably is to start at the beginning, presenting the observations, thoughts and conclusions of each of the world’s greatest physicists through their eyes, one at a time. In this way we hope that the reader may take an enjoyable journey through the strange truths of quantum theory and understand why the conclusions of these great minds are what they are. This book starts with the most general view of the world and gradually leads readers to those new, unbelievable but real facts about the very nature of our universe.
Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
David Reich - 2018
Now, in The New Science of the Human Past, Reich describes just how the human genome provides not only all the information that a fertilized human egg needs to develop but also contains within it the history of our species. He delineates how the Genomic Revolution and ancient DNA are transforming our understanding of our own lineage as modern humans; how genomics deconstructs the idea that there are no biologically meaningful differences among human populations (though without adherence to pernicious racist hierarchies); and how DNA studies reveal the deep history of human inequality--among different populations, between the sexes, and among individuals within a population.
'Nature and the Greeks' and 'Science and Humanism'
Erwin Schrödinger - 1954
Here the texts of two of Schr�dinger's most famous lecture series are made available again. In the first, entitled Nature and the Greeks, Schr�dinger offers a historical account of the scientific world picture. In the second, called Science and Humanism, he addresses fundamental questions about the link between scientific and spiritual matters. As Roger Penrose confirms, these are the profound thoughts of a great mind, and as relevant today as when they were first published in the 1950s.
Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think
David Lindley - 1996
Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.
E=mc²: A Biography of the World's Most Famous Equation
David Bodanis - 2000
Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee
Spacetime Physics
Edwin F. Taylor - 1966
Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars. The chapter on general relativity with new material on gravity waves, black holes, and cosmology.
Heavenly Intrigue: Johannes Kepler, Tycho Brahe, and the Murder Behind One of History's Greatest Scientific Discoveries
Joshua Gilder - 2004
That collaboration would mark the dawn of modern science . . . and end in murder.Johannes Kepler changed forever our understanding of the universe with his three laws of planetary motion. He demolished the ancient model of planets moving in circular orbits and laid the foundation for the universal law of gravitation, setting physics on the course of revelation it follows to this day. Kepler was one of the greatest astronomers of all time. Yet if it hadn't been for the now lesser-known Tycho Brahe, the man for whom Kepler apprenticed, Kepler would be a mere footnote in today's science books. Brahe was the Imperial Mathematician at the court of the Holy Roman Emperor in Prague and the most famous astronomer of his era. He was one of the first great systematic empirical scientists and one of the earliest founders of the modern scientific method. His forty years of planetary observations—an unparalleled treasure of empirical data—contained the key to Kepler's historic breakthrough. But those observations would become available to Kepler only after Brahe's death. This groundbreaking history portrays the turbulent collaboration between these two astronomers at the turn of the seventeenth century and their shattering discoveries that would mark the transition from medieval to modern science. But that is only half the story. Based on recent forensic evidence (analyzed here for the first time) and original research into medieval and Renaissance alchemy—all buttressed by in-depth interviews with leading historians, scientists, and medical specialists—the authors have put together shocking and compelling evidence that Tycho Brahe did not die of natural causes, as has been believed for four hundred years. He was systematically poisoned—most likely by his assistant, Johannes Kepler. An epic tale of murder and scientific discovery, Heavenly Intrigue reveals the dark side of one of history’s most brilliant minds and tells the story of court politics, personal intrigue, and superstition that surrounded the protean invention of two great astronomers and their quest to find truth and beauty in the heavens above.