Book picks similar to
Supergravity by Daniel Z. Freedman
physics
quantum-gravity
partially-read
university-books
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
Jawetz, Melnick, & Adelberg's Medical Microbiology
George F. Brooks - 1991
The aim remains to provide a reference to the aspects of medical microbiology particularly important for clinical infections and chemotherapy. Geo. F. Brooks (U. of California, San Francisco), Jane
Cognitive Behavioral Therapy: CBT Essentials and Fundamentals
Jonny Bell - 2014
In our modern world, we see people struggling with depression, anxiety, anger, etc. Psychologist and counselors have been using Cognitive Behavioral Therapy to solve all these struggles. A Practical Guide to CBT and Modern Psychology will allow anyone to use CBT in their lives. It doesn't matter whether or not you have a background in Psychology. In this comprehensive guide you will learn all the fundamentals used in CBT by therapists. Inside you will be exposed to the following: CBT History Techniques When and How to use CBT Examples Methods to help others with psychological struggles And much more If you're ready to understand and use the powerful techniques of Cognitive Behavioral Therapy, then this is an excellent guide.
Calculus: The Classic Edition
Earl W. Swokowski - 1991
Groundbreaking in every way when first published, this book is a simple, straightforward, direct calculus text. It's popularity is directly due to its broad use of applications, the easy-to-understand writing style, and the wealth of examples and exercises which reinforce conceptualization of the subject matter. The author wrote this text with three objectives in mind. The first was to make the book more student-oriented by expanding discussions and providing more examples and figures to help clarify concepts. To further aid students, guidelines for solving problems were added in many sections of the text. The second objective was to stress the usefulness of calculus by means of modern applications of derivatives and integrals. The third objective, to make the text as accurate and error-free as possible, was accomplished by a careful examination of the exposition, combined with a thorough checking of each example and exercise.
Young Einstein: From the Doxerl Affair to the Miracle Year
L. Randles Lagerstrom - 2013
In 1905 an unknown 26-year-old clerk at the Swiss Patent Office, who had supposedly failed math in school, burst on to the scientific scene and swept away the hidebound theories of the day. The clerk, Albert Einstein, introduced a new and unexpected understanding of the universe and launched the two great revolutions of twentieth-century physics, relativity and quantum mechanics. The obscure origin and wide-ranging brilliance of the work recalled Isaac Newton’s “annus mirabilis” (miracle year) of 1666, when as a 23-year-old seeking safety at his family manor from an outbreak of the plague, he invented calculus and laid the foundations for his theory of gravity. Like Newton, Einstein quickly became a scientific icon--the image of genius and, according to Time magazine, the Person of the Century.The actual story is much more interesting. Einstein himself once remarked that “science as something coming into being ... is just as subjectively, psychologically conditioned as are all other human endeavors.” In this profile, the historian of science L. Randles Lagerstrom takes you behind the myth and into the very human life of the young Einstein. From family rifts and girlfriend troubles to financial hardships and jobless anxieties, Einstein’s early years were typical of many young persons. And yet in the midst of it all, he also saw his way through to profound scientific insights. Drawing upon correspondence from Einstein, his family, and his friends, Lagerstrom brings to life the young Einstein and enables the reader to come away with a fuller and more appreciative understanding of Einstein the person and the origins of his revolutionary ideas.About the cover image: While walking to work six days a week as a patent clerk in Bern, Switzerland, Einstein would pass by the famous "Zytglogge" tower and its astronomical clocks. The daily juxtaposition was fitting, as the relative nature of time and clock synchronization would be one of his revolutionary discoveries in the miracle year of 1905.
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
Steven H. Strogatz - 1994
The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.
Gravity: An Introduction to Einstein's General Relativity
James B. Hartle - 2002
Using a "physics first" approach to the subject, renowned relativist James B. Hartle provides a fluent and accessible introduction that uses a minimum of new mathematics and is illustrated with a wealth of exciting applications. KEY TOPICS: The emphasis is on the exciting phenomena of gravitational physics and the growing connection between theory and observation. The Global Positioning System, black holes, X-ray sources, pulsars, quasars, gravitational waves, the Big Bang, and the large scale structure of the universe are used to illustrate the widespread role of how general relativity describes a wealth of everyday and exotic phenomena. MARKET: For anyone interested in physics or general relativity.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Principles of Mathematical Analysis
Walter Rudin - 1964
The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Great Formulas Explained - Physics, Mathematics, Economics
Metin Bektas - 2013
Each formula is explained gently and in great detail, including a discussion of all the quanitites involved and examples that will make clear how and where to apply it. On top of that, there are plenty of illustrations that support the explanations and make the reading experience even more vivid.The book covers a wide range of diverse topics: acoustics, explosions, hurricanes, pipe flow, car traffic, gravity, satellites, roller coasters, flight, conservation laws, trigonometry, equations, inflation, loans, and many more. From the author of "Statistical Snacks" and "Business Math Basics - Practical and Simple".
Astronomy
Andrew Fraknoi - 2012
The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.
Vector Mechanics for Engineers: Statics
Ferdinand P. Beer - 1977
Following on the success of the first six editions of the series, this work introduces theoretical and pedagogical innovations in statics, dynamics, and mechanics of materials education.
Mechanics of Materials, SI Edition
James M. Gere - 2002
They are converted to metric units using realistic data to help students grasp what is feasible in engineering practice.
Introductory Circuit Analysis
Robert L. Boylestad - 1968
Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.