Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Elementary Statistics: Picturing the World


Ron Larson - 2002
    Offering an approach with a visual/graphical emphasis, this text offers a number of examples on the premise that students learn best by doing. This book features an emphasis on interpretation of results and critical thinking over calculations.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Visualize This: The FlowingData Guide to Design, Visualization, and Statistics


Nathan Yau - 2011
    Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.

The Art of R Programming: A Tour of Statistical Software Design


Norman Matloff - 2011
    No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.

Design and Analysis of Experiments


Douglas C. Montgomery - 1976
     Douglas Montgomery arms readers with the most effective approach for learning how to design, conduct, and analyze experiments that optimize performance in products and processes. He shows how to use statistically designed experiments to obtain information for characterization and optimization of systems, improve manufacturing processes, and design and develop new processes and products. You will also learn how to evaluate material alternatives in product design, improve the field performance, reliability, and manufacturing aspects of products, and conduct experiments effectively and efficiently. Discover how to improve the quality and efficiency of working systems with this highly-acclaimed book. This 6th Edition: Places a strong focus on the use of the computer, providing output from two software products: Minitab and DesignExpert. Presents timely, new examples as well as expanded coverage on adding runs to a fractional factorial to de-alias effects. Includes detailed discussions on how computers are currently used in the analysis and design of experiments. Offers new material on a number of important topics, including follow-up experimentation and split-plot design. Focuses even more sharply on factorial and fractional factorial design.

Introductory Statistics


Neil A. Weiss - 1987
    This book develops statistical thinking over rote drill and practice. The Nature of Statistics; Organizing Data; Descriptive Measures; Probability Concepts; Discrete Random Variables; The Normal Distribution; The Sampling Distribution of the Sample Menu; Confidence Intervals for One Population Mean; Hypothesis Tests for One Population Mean; Inferences for Two Population Means; Inferences for Population Standard Deviations; Inferences for Population Proportions; Chi-Square Procedures; Descriptive Methods in Regression and Correlation; Inferential Methods in Regression and Correlation; Analysis of Variance (ANOVA) For all readers interested in Introductory Statistics.

The Art of Statistics: How to Learn from Data


David Spiegelhalter - 2019
      Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.

Machine Learning for Hackers


Drew Conway - 2012
    Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data

Tell Me The Odds: A 15 Page Introduction To Bayes Theorem


Scott Hartshorn - 2017
    Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.

Statistics: An Introduction Using R


Michael J. Crawley - 2005
    R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http: //www.imperial.ac.uk/bio/research/crawl... Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.

The Complete Idiot's Guide to Statistics


Robert A. Donnelly Jr. - 2004
    Readerswill find information on frequency distributions; mean, median, and mode; range, variance, and standard deviation;probability; and more.-Emphasizes Microsoft Excel for number-crunching and computationsDownload a sample chapter.

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Statistics for Business & Economics


James T. McClave - 1991
    Theoretical, yet applied. Statistics for Business and Economics, Eleventh Edition, gives you the best of both worlds. Using a rich array of applications from a variety of industries, McClave/Sincich/Benson clearly demonstrates how to use statistics effectively in a business environment.The book focuses on developing statistical thinking so the reader can better assess the credibility and value of inferences made from data. As consumers and future producers of statistical inferences, readers are introduced to a wide variety of data collection and analysis techniques to help them evaluate data and make informed business decisions. As with previous editions, this revision offers an abundance of applications with many new and updated exercises that draw on real business situations and recent economic events. The authors assume a background of basic algebra.