Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993
    

Elementary Differential Equations


Earl D. Rainville - 1962
    Each chapter includes many illustrative examples to assist the reader. The book emphasizes methods for finding solutions to differential equations. It provides many abundant exercises, applications, and solved examples with careful attention given to readability. Elementary Differential Equations includes a thorough treatment of power series techniques. In addition, the book presents a classical treatment of several physical problems to show how Fourier series become involved in the solution of those problems. The eighth edition of Elementary Differential Equations has been revised to include a new supplement in many chapters that provides suggestions and exercises for using a computer to assist in the understanding of the material in the chapter. It also now provides an introduction to the phase plane and to different types of phase portraits. A valuable reference book for readers interested in exploring the technological and other applications of differential equations.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

The Visual Display of Quantitative Information


Edward R. Tufte - 1983
    Theory and practice in the design of data graphics, 250 illustrations of the best (and a few of the worst) statistical graphics, with detailed analysis of how to display data for precise, effective, quick analysis. Design of the high-resolution displays, small multiples. Editing and improving graphics. The data-ink ratio. Time-series, relational graphics, data maps, multivariate designs. Detection of graphical deception: design variation vs. data variation. Sources of deception. Aesthetics and data graphical displays. This is the second edition of The Visual Display of Quantitative Information. Recently published, this new edition provides excellent color reproductions of the many graphics of William Playfair, adds color to other images, and includes all the changes and corrections accumulated during 17 printings of the first edition.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Mathematical Methods in the Physical Sciences


Mary L. Boas - 1967
    Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.

Differential Equations


Richard Bronson - 2010
    This supplement will cater to the requirements of students by covering all important topics of Laplace transformation, Matrices, Numerical Methods. Further enhanced is its usability by inclusion of chapter end questions in sync with student needs. Table of contents: 1. Basic Concepts 2. An Introduction to Modeling and Qualitative Methods 3. Classification of First-Order Differential Equations 4. Separable First-Order Differential Equations 5. Exact First-order Differential Equations 6. Linear First-Order Differential Equations 7. Applications of First-Order Differential Equations 8. Linear Differential Equations: Theory of Solutions 9. Second-Order Linear Homogeneous Differential Equations with Constant Coefficients 10. nth-Order Linear Homogeneous Differential Equations with Constant Coefficients 11. The Method of Undetermined Coefficients 12. Variation of Parameters 13. Initial-Value Problems for Linear Differential Equations 14. Applications of Second-Order Linear Differential Equations 15. Matrices 16. eAt 17. Reduction of Linear Differential Equations to a System of First-Order Equations 18. Existence and Uniqueness of Solutions 19. Graphical and Numerical Methods for Solving First-Order Differential Equations 20. Further Numerical Methods for Solving First-Order Differential Equations 21. Numerical Methods for Solving Second-Order Differential Equations Via Systems 22. The Laplace Transform 23. Inverse Laplace Transforms 24. Convolutions and the Unit Step Function 25. Solutions of Linear Differential Equations with Constant Coefficients by Laplace Transforms 26. Solutions of Linear?Systems by Laplace Transforms 27. Solutions of Linear Differential Equations with Constant Coefficients by Matrix Methods 28. Power Series Solutions of Linear Differential Equations with Variable Coefficients 29. Special Functions 30. Series Solutions N

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Physics for Scientists and Engineers, Volume 1


Raymond A. Serway - 2003
    However, rather than resting on that reputation, the new edition of this text marks a significant advance in the already excellent quality of the book. While preserving concise language, state of the art educational pedagogy, and top-notch worked examples, the Eighth Edition features a unified art design as well as streamlined and carefully reorganized problem sets that enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. Likewise, PHYSICS FOR SCIENTISTS AND ENGINEERS, will continue to accompany Enhanced WebAssign in the most integrated text-technology offering available today. In an environment where new Physics texts have appeared with challenging and novel means to teach students, this book exceeds all modern standards of education from the most solid foundation in the Physics market today.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Linear Algebra


Georgi E. Shilov - 1971
    Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.

Who Is Fourier? a Mathematical Adventure


Transnational College of Lex - 1995
    This is done in a way that is not only easy to understand, but is actually fun! Professors and engineers, with high school and college students following closely, comprise the largest percentage of our readers. It is a must-have for anyone interested in music, mathematics, physics, engineering, or complex science. Dr. Yoichiro Nambu, 2008 Nobel Prize Winner in Physics, served as a senior adviser to the English version of Who is Fourier? A Mathematical Adventure.

Maths in Minutes: 200 Key Concepts Explained in an Instant


Paul Glendinning - 2012
    Each concept is quick and easy to remember, described by means of an easy-to-understand picture and a maximum 200-word explanation. Concepts span all of the key areas of mathematics, including Fundamentals of Mathematics, Sets and Numbers, Geometry, Equations, Limits, Functions and Calculus, Vectors and Algebra, Complex Numbers, Combinatorics, Number Theory, Metrics and Measures and Topology. Incredibly quick - clear artworks and simple explanations that can be easily remembered. Based on scientific research that the brain best absorbs information visually. Compact and portable format - the ideal, handy reference.

Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry


George F. Simmons - 1981
    . . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.

Gravitation


Charles W. Misner - 1973
    These sections together make an appropriate one-term advanced/graduate level course (mathematical prerequisites: vector analysis and simple partial-differential equations). The book is printed to make it easy for readers to identify these sections.• The remaining Track 2 material provides a wealth of advanced topics instructors can draw from to flesh out a two-term course, with Track 1 sections serving as prerequisites.