Book picks similar to
Finite Group Theory by I. Martin Isaacs


mathematics
maths
abstract-algebra
finite-group-theory

Journey through Genius: The Great Theorems of Mathematics


William Dunham - 1990
    Now William Dunham gives them the attention they deserve.Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creator — from Archimedes, the absentminded theoretician whose absorption in his work often precluded eating or bathing, to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures, to the paranoid genius of modern times, Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics.A rare combination of the historical, biographical, and mathematical, Journey Through Genius is a fascinating introduction to a neglected field of human creativity.

Game Theory 101: The Basics


William Spaniel - 2011
    From the first lesson to the last, each chapter introduces games of increasing complexity and then teaches the game theoretical tools necessary to solve them. Inside, you will find: All the basics fully explained, including pure strategy Nash equilibrium, mixed strategy Nash equilibrium, the mixed strategy algorithm, how to calculate payoffs, strict dominance, weak dominance, iterated elimination of strictly dominated strategies, iterated elimination of weakly dominated strategies, and more! Dozens of games solved, including the prisoner's dilemma, stag hunt, matching pennies, zero sum games, battle of the sexes/Bach or Stravinsky, chicken/snowdrift, pure coordination, deadlock, and safety in numbers! Crystal clear, line-by-line calculations of every step, with more than 200 images so you don't miss a thing! Tons of applications: war, trade, game shows, and duopolistic competition. Quick, efficient, and to the point, Game Theory 101: The Basics is perfect for introductory game theory, intermediate microeconomics, and political science.

In Pursuit of the Unknown: 17 Equations That Changed the World


Ian Stewart - 2012
    We often overlook the historical link between mathematics and technological advances, says Stewart—but this connection is integral to any complete understanding of human history.Equations are modeled on the patterns we find in the world around us, says Stewart, and it is through equations that we are able to make sense of, and in turn influence, our world. Stewart locates the origins of each equation he presents—from Pythagoras's Theorem to Newton's Law of Gravity to Einstein's Theory of Relativity—within a particular historical moment, elucidating the development of mathematical and philosophical thought necessary for each equation's discovery. None of these equations emerged in a vacuum, Stewart shows; each drew, in some way, on past equations and the thinking of the day. In turn, all of these equations paved the way for major developments in mathematics, science, philosophy, and technology. Without logarithms (invented in the early 17th century by John Napier and improved by Henry Briggs), scientists would not have been able to calculate the movement of the planets, and mathematicians would not have been able to develop fractal geometry. The Wave Equation is one of the most important equations in physics, and is crucial for engineers studying the vibrations in vehicles and the response of buildings to earthquakes. And the equation at the heart of Information Theory, devised by Claude Shannon, is the basis of digital communication today.An approachable and informative guide to the equations upon which nearly every aspect of scientific and mathematical understanding depends, In Pursuit of the Unknown is also a reminder that equations have profoundly influenced our thinking and continue to make possible many of the advances that we take for granted.

How the Brain Learns Mathematics


David A. Sousa - 2007
    Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points

Unknown Quantity: A Real and Imaginary History of Algebra


John Derbyshire - 2006
    As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.

The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World


Edward Dolnick - 2011
    A meld of history and science, this book is a group portrait of some of the greatest minds who ever lived as they wrestled with nature’s most sweeping mysteries. The answers they uncovered still hold the key to how we understand the world.At the end of the seventeenth century—an age of religious wars, plague, and the Great Fire of London—when most people saw the world as falling apart, these earliest scientists saw a world of perfect order. They declared that, chaotic as it looked, the universe was in fact as intricate and perfectly regulated as a clock. This was the tail end of Shakespeare’s century, when the natural land the supernatural still twined around each other. Disease was a punishment ordained by God, astronomy had not yet broken free from astrology, and the sky was filled with omens. It was a time when little was known and everything was new. These brilliant, ambitious, curious men believed in angels, alchemy, and the devil, and they also believed that the universe followed precise, mathematical laws—-a contradiction that tormented them and changed the course of history.The Clockwork Universe is the fascinating and compelling story of the bewildered geniuses of the Royal Society, the men who made the modern world.

Dice World: Science and Life in a Random Universe


Brian Clegg - 2013
    Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain.Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic – so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory, showing that everything in the universe has probability at its heart.That gives human beings a problem. We understand the world through patterns. Randomness and probability will always be alien to us. But it’s time to plunge into this fascinating, shadowy world, because randomness crops up everywhere. Probability and statistics are the only way to get a grip on nature’s workings. They may even seal the fate of free will and predict how the universe will end.Forget Newton’s clockwork universe. Welcome to Dice World.

God Created the Integers: The Mathematical Breakthroughs That Changed History


Stephen Hawking - 2005
    In this collection of landmark mathematical works, editor Stephen Hawking has assembled the greatest feats humans have ever accomplished using just numbers and their brains.

Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences


Ernest F. Haeussler Jr. - 1987
    Emphasis on developing algebraic skills is extended to the exercises--including both drill problems and applications. The authors work through examples and explanations with a blend of rigor and accessibility. In addition, they have refined the flow, transitions, organization, and portioning of the content over many editions to optimize learning for readers. The table of contents covers a wide range of topics efficiently, enabling readers to gain a diverse understanding.

50 Mathematical Ideas You Really Need to Know


Tony Crilly - 2007
    Who invented zero? Why are there 60 seconds in a minute? Can a butterfly's wings really cause a storm on the far side of the world? In 50 concise essays, Professor Tony Crilly explains the mathematical concepts that allow use to understand and shape the world around us.

Easy as Pi: The Countless Ways We Use Numbers Every Day


Jamie Buchan - 2009
    Make this and all of the Blackboard Books(tm) a permanent fixture on your shelf, and you'll have instant access to a breadth of knowledge. Whether you need homework help or want to win that trivia game, this series is the trusted source for fun facts.

Maths in Minutes: 200 Key Concepts Explained in an Instant


Paul Glendinning - 2012
    Each concept is quick and easy to remember, described by means of an easy-to-understand picture and a maximum 200-word explanation. Concepts span all of the key areas of mathematics, including Fundamentals of Mathematics, Sets and Numbers, Geometry, Equations, Limits, Functions and Calculus, Vectors and Algebra, Complex Numbers, Combinatorics, Number Theory, Metrics and Measures and Topology. Incredibly quick - clear artworks and simple explanations that can be easily remembered. Based on scientific research that the brain best absorbs information visually. Compact and portable format - the ideal, handy reference.

Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)


Michael H. Kutner - 2003
    Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.

The 85 ways to tie a tie: the science and aesthetics of tie knots


Thomas Fink - 1999
    Tie Knots unravels the history of ties, the story of the discovery of the new knots and some very elegant mathematics in action. If Einstein had been left alone in Tie Rack for long enough perhaps he would have worked it out : why do people tie their ties in only 4 ways? And how many other possibilities are there? Two Cambridge University physicists, research fellows working from the Cavendish laboratories, have discovered via a recherche branch of mathematics - knot theory - that although only four knots are traditionally used in tying neck ties another 81 exist. This is the story of their discovery, of the history of neck ties and of the equations that express whether a tie is handsome or not. Of the 81 new knots, 6 are practical and elegant. We now have somewhere else to go after the Pratt, the Four-in-Hand, the Full and Half Windsor. Sartorial stylishness is wrapped effortlessly around popular mathematics. A concept developed to describe the movement of gas molecules - the notion of persistent walks around a triangular lattice - also describes the options for tie tying. Pure maths becomes pure fashion in a delightfully designed little package from Fourth Estate.

Speed Mathematics: Secret Skills for Quick Calculation


Bill Handley - 2003
     Speed Mathematics teaches simple methods that will enable you to make lightning calculations in your head-including multiplication, division, addition, and subtraction, as well as working with fractions, squaring numbers, and extracting square and cube roots. Here's just one example of this revolutionary approach to basic mathematics: 96 x 97 = Subtract each number from 100. 96 x 97 = 4 3 Subtract diagonally. Either 96--3 or 97-- 4. The result is the first part of the answer. 96 x 97 = 93 4 3 Multiply the numbers in the circles. 4 x 3 = 12. This is the second part of the answer. 96 x 97 = 9312 4 3 It's that easy!