The Poincaré Conjecture: In Search of the Shape of the Universe


Donal O'Shea - 2007
    He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.

Advanced Engineering Mathematics


Erwin Kreyszig - 1968
    The new edition provides invitations - not requirements - to use technology, as well as new conceptual problems, and new projects that focus on writing and working in teams.

Elements of Information Theory


Thomas M. Cover - 1991
    Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

The Heart of Mathematics: An Invitation to Effective Thinking


Edward B. Burger - 1999
    In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.

Div, Grad, Curl, and All That: An Informal Text on Vector Calculus


Harry M. Schey - 1973
    Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

The Mathematical Tourist: New & Updated Snapshots of Modern Mathematics


Ivars Peterson - 1988
    Now the journey continues in a new, updated edition that includes all the latest information on mathematical proofs, fractals, prime numbers, and chaos, as well as new material on* the relationship between mathematical knots and DNA* how computers based on quantum logic can significantly speed up the factoring of large composite numbers* the relationship between four-dimensional geometry and physical theories of the nature of matter* the application of cellular automata models to social questions and the peregrinations of virtual ants* a novel mathematical model of quasicrystals based on decagon-shaped tilesBlazing a trail through rows of austere symbols and dense lines of formulae, Peterson explores the central ideas behind the work of professional mathematicians-- how and where their pieces of the mathematical puzzle fit in, the sources of their ideas, their fountains of inspiration, and the images that carry them from one discovery to another.

Introduction to Mathematical Philosophy


Bertrand Russell - 1918
    In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.

Mathematics in Western Culture


Morris Kline - 1953
    Reveals the important contributions of mathematics to the physical and social sciences, philosophy, religion, literature, and art.

Prisoner's Dilemma: John von Neumann, Game Theory, and the Puzzle of the Bomb


William Poundstone - 1992
    Though the answers may seem simple, their profound implications make the prisoner's dilemma one of the great unifying concepts of science. Watching players bluff in a poker game inspired John von Neumann--father of the modern computer and one of the sharpest minds of the century--to construct game theory, a mathematical study of conflict and deception. Game theory was readily embraced at the RAND Corporation, the archetypical think tank charged with formulating military strategy for the atomic age, and in 1950 two RAND scientists made a momentous discovery.Called the prisoner's dilemma, it is a disturbing and mind-bending game where two or more people may betray the common good for individual gain. Introduced shortly after the Soviet Union acquired the atomic bomb, the prisoner's dilemma quickly became a popular allegory of the nuclear arms race. Intellectuals such as von Neumann and Bertrand Russell joined military and political leaders in rallying to the preventive war movement, which advocated a nuclear first strike against the Soviet Union. Though the Truman administration rejected preventive war the United States entered into an arms race with the Soviets and game theory developed into a controversial tool of public policy--alternately accused of justifying arms races and touted as the only hope of preventing them.A masterful work of science writing, Prisoner's Dilemma weaves together a biography of the brilliant and tragic von Neumann, a history of pivotal phases of the cold war, and an investigation of game theory's far-reaching influence on public policy today. Most important, Prisoner's Dilemma is the incisive story of a revolutionary idea that has been hailed as a landmark of twentieth-century thought.

The Story of Mathematics


Anne Rooney - 2008
    Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Elementary Analysis: The Theory of Calculus


Kenneth A. Ross - 1980
    It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.

Number Theory


George E. Andrews - 1994
    In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..