The Math Instinct: Why You're a Mathematical Genius (Along with Lobsters, Birds, Cats, and Dogs)


Keith Devlin - 2005
    The easy kind, practiced by ants, shrimp, Welsh corgis -- and us -- is innate. What innate calculating skills do we humans have? Leaving aside built-in mathematics, such as the visual system, ordinary people do just fine when faced with mathematical tasks in the course of the day. Yet when they are confronted with the same tasks presented as "math," their accuracy often drops. But if we have innate mathematical ability, why do we have to teach math and why do most of us find it so hard to learn? Are there tricks or strategies that the ordinary person can do to improve mathematical ability? Can we improve our math skills by learning from dogs, cats, and other creatures that "do math"? The answer to each of these questions is a qualified yes. All these examples of animal math suggest that if we want to do better in the formal kind of math, we should see how it arises from natural mathematics. From NPR's "Math Guy" -- The Math Instinct will provide even the most number-phobic among us with confidence in our own mathematical abilities.

Gladiators, Pirates and Games of Trust: How Game Theory, Strategy and Probability Rule Our Lives


Haim Shapira - 2017
    Game Theory is the mathematical formalization of interactive decision-making - it assumes that each player's goal is to maximize his/her benefit, whatever it may be. Players may be friends, foes, political parties, states, or any entity that behaves interactively, whether collectively or individually. One of the problems with game analysis is the fact that, as a player, it's very hard to know what would benefit each of the other players; some of us are not even clear about our own goals or what might actually benefit us. Haim Shapira uses multiple examples to explain what Game Theory is and how the different interactions between decision-makers can play out. In this book you will: Meet the Nobel Laureate John F Nash and familiarize yourself with his celebrated equilibrium Learn the basic ideas of the art of negotiation Visit the gladiators' ring and apply for a coaching position Build an airport and divide inheritance Issue ultimatums and learn to trust

Modern Music and After: Directions Since 1945


Paul Griffiths - 1995
    The disruptions of the war, and the struggles of the ensuing peace, were reflected in the music of the time: in Pierre Boulez's radical re-forming of compositional technique and in John Cage's move into zen music, in Milton Babbitt's settling of the serial system, and in Dmitry Shostakovich's unsettling symphonies, in Karlheinz Stockhausen's development of electronic music and in Luigi Nono's pursuit of the universally human, in Iannis Xenakis's view of music as sounding mathematics and in Luciano Berio's consideration of it as language. The initiatives of these composers and their contemporaries opened prospects that have continued to unfold. This constant expansion of musical thinking since 1945 has left us with no single history of music. We live' as Griffiths says, among many simultaneous histories'. His study accordingly follows several different paths, showing how they converge and diverge.

CK-12 Calculus


CK-12 Foundation - 2010
    Topics include: Limits, Derivatives, and Integrations.

A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science


Michael S. Schneider - 1994
    This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.

From Mathematics to Generic Programming


Alexander A. Stepanov - 2014
    If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge

Men of Mathematics


Eric Temple Bell - 1937
    Bell, a leading figure in mathematics in America for half a century. Men of Mathematics accessibly explains the major mathematics, from the geometry of the Greeks through Newton's calculus and on to the laws of probability, symbolic logic, and the fourth dimension. In addition, the book goes beyond pure mathematics to present a series of engrossing biographies of the great mathematicians -- an extraordinary number of whom lived bizarre or unusual lives. Finally, Men of Mathematics is also a history of ideas, tracing the majestic development of mathematical thought from ancient times to the twentieth century. This enduring work's clear, often humorous way of dealing with complex ideas makes it an ideal book for the non-mathematician.

Introducing Infinity: A Graphic Guide


Brian Clegg - 2012
    The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.

How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics


James D. Stein - 2008
    In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

The Dot and the Line: A Romance in Lower Mathematics


Norton Juster - 1963
    But the dot, though perfect in every way, only had eyes for a wild and unkempt squiggle. All of the line's romantic dreams were in vain, until he discovered...angles! Now, with newfound self-expression, he can be anything he wants to be--a square, a triangle, a parallelogram....And that's just the beginning!First published in 1963 and made into an Academy Award-winning animated short film, here is a supremely witty love story with a twist that reveals profound truths about relationships--both human and mathematical--sure to tickle lovers of all ages.

Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge


William Poundstone - 1988
    This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.

Music, Language, and the Brain


Aniruddh D. Patel - 2007
    Patel challenges the widespread belief that music and language are processed independently. Since Plato's time, the relationship between music and language has attracted interest and debate from a wide range of thinkers. Recently, scientific research on this topic has been growing rapidly, as scholars from diverse disciplines, including linguistics, cognitive science, music cognition, and neuroscience are drawn to the music-language interface as one way to explore the extent to which different mental abilities are processed by separate brain mechanisms. Accordingly, the relevant data and theories have been spread across a range of disciplines. This volume provides the first synthesis, arguing that music and language share deep and critical connections, and that comparative research provides a powerful way to study the cognitive and neural mechanisms underlying these uniquely human abilities.Winner of the 2008 ASCAP Deems Taylor Award.

Imagining Numbers


Barry Mazur - 2002
    This book reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers


John MacCormick - 2012
    A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.