Introduction to Linear Algebra
Gilbert Strang - 1993
Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
Physics Demystified: A Self-Teaching Guide (Demystified)
Stan Gibilisco - 2002
In "Physics Demystified" best-selling author Stan Gibilisco offers a fun, effective, and totally painless way to learn the fundamentals and general concepts of physics.With "Physics Demystified" you master the subject one simple step at a time – at your own speed. Unlike most books on physics, general principles are presented first – and the details follow. In order to make the learning process as clear and simple as possible, heavy-duty math, formulas, and equations are kept to a minimum. This unique self-teaching guide offers questions at the end of each chapter and section to pinpoint weaknesses, and a 100-question final exam to reinforce the entire book.Simple enough for a beginner but challenging enough for an advanced student, "Physics Demystified" is your direct route to learning or brushing up on physics.HERE’S EVERYTHING YOU NEED TO: * Understand the math used in physical science* Solve mass/force/acceleration problems* Create mathematical models of physical phenomena* Perform distance vs. time calculations* Determine potential and kinetic energy* Calculate the wavelength of sounds and radio signals* Understand visible light interference patterns* Calculate the energy and frequency of a moving particle* Understand atomic structure* Learn about electric current, voltage, resistance, power, and energy
Quantum Field Theory in a Nutshell
A. Zee - 2003
A quantum field theory text for the twenty-first century, this book makes the essential tool of modern theoretical physics available to any student who has completed a course on quantum mechanics and is eager to go on.Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics. These days, physicists turn to quantum field theory to describe a multitude of phenomena.Stressing critical ideas and insights, Zee uses numerous examples to lead students to a true conceptual understanding of quantum field theory--what it means and what it can do. He covers an unusually diverse range of topics, including various contemporary developments, while guiding readers through thoughtfully designed problems. In contrast to previous texts, Zee incorporates gravity from the outset and discusses the innovative use of quantum field theory in modern condensed matter theory.Without a solid understanding of quantum field theory, no student can claim to have mastered contemporary theoretical physics. Offering a remarkably accessible conceptual introduction, this text will be widely welcomed and used.
Perfect Rigor: A Genius and the Mathematical Breakthrough of the Century
Masha Gessen - 2009
A prize of one million dollars was offered to anyone who could unravel it, but Perelman declined the winnings, and in doing so inspired journalist Masha Gessen to tell his story. Drawing on interviews with Perelman’s teachers, classmates, coaches, teammates, and colleagues in Russia and the United States—and informed by her own background as a math whiz raised in Russia—Gessen uncovered a mind of unrivaled computational power, one that enabled Perelman to pursue mathematical concepts to their logical (sometimes distant) end. But she also discovered that this very strength turned out to be Perelman's undoing and the reason for his withdrawal, first from the world of mathematics and then, increasingly, from the world in general.
The Fourth Dimension: A Guided Tour of the Higher Universes
Rudy Rucker - 1984
and now, The Fourth Dimension is this handy paperback. The result is a fantastic, enlightening, and mind-expanding reading experience. In text, pictures, and puzzles, master science and science fiction writer Rudy Rucker immerses his readers in an amazing exploration of a mysterious realm — a realm once seen only by mystics, physicists, and mathematicians. More accessible than Gödel, Escher, Bach and more playful than The Tao of Physics, Rucker's The Fourth Dimension is the most engaging tour of other dimensions since Flatland.David Povilaitis' 200 drawings illustrate Rucker's heady insights while dozens of puzzles and problems make the book a delight to the eye and mind. As Eileen Pollack has written in her rave review, The Fourth Dimension is "magical ... Its effects persist beyond its covers." That's because, like everything else in the fourth dimension, this is more than a book, it is a mental spaceship capable of grand tours of universes far beyond our own.
Conceptual Mathematics: A First Introduction to Categories
F. William Lawvere - 1997
Written by two of the best-known names in categorical logic, Conceptual Mathematics is the first book to apply categories to the most elementary mathematics. It thus serves two purposes: first, to provide a key to mathematics for the general reader or beginning student; and second, to furnish an easy introduction to categories for computer scientists, logicians, physicists, and linguists who want to gain some familiarity with the categorical method without initially committing themselves to extended study.
Lectures on Quantum Mechanics
Paul A.M. Dirac - 1964
The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.
Quantum Field Theory for the Gifted Amateur
Tom Lancaster - 2014
Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in detail. Using numerous worked examples, diagrams, and careful physically motivated explanations, this book will smooth the path towards understanding the radically different and revolutionary view of the physical world that quantum field theory provides, and which all physicists should have the opportunity to experience.To request a copy of the Solutions Manual, visit http: //global.oup.com/uk/academic/physics/ad....
More Programming Pearls: Confessions of a Coder
Jon L. Bentley - 1988
These techniques deal with real programs and they are realistically illustrated, using the C and Awk languages. Bentley also provides the reader with some tricks of the programmer's trade, like a collection of rules of thumb and hints for finding simple solutions to hard problems.These essays also originally appeared in the author's column in Communication of the ACM, and have been substantially revised, incorporating new sections, problems, and reader comments.
Present at the Creation: The Story of CERN and the Large Hadron Collider
Amir D. Aczel - 2010
A project of CERN, the European Organization for Nuclear Research, its audacious purpose is to re-create, in a 16.5-mile-long circular tunnel under the French-Swiss countryside, the immensely hot and dense conditions that existed some 13.7 billion years ago within the first trillionth of a second after the fiery birth of our universe. The collider is now crashing protons at record energy levels never created by scientists before, and it will reach even higher levels by 2013. Its superconducting magnets guide two beams of protons in opposite directions around the track. After accelerating the beams to 99.9999991 percent of the speed of light, it collides the protons head-on, annihilating them in a flash of energy sufficient—in accordance with Einstein’s elegant statement of mass-energy equivalence, E=mc2—to coalesce into a shower of particles and phenomena that have not existed since the first moments of creation. Within the LHC’s detectors, scientists hope to see empirical confirmation of key theories in physics and cosmology.In telling the story of what is perhaps the most anticipated experiment in the history of science, Amir D. Aczel takes us inside the control rooms at CERN at key moments when an international team of top researchers begins to discover whether this multibillion-euro investment will fulfill its spectacular promise. Through the eyes and words of the men and women who conceived and built CERN and the LHC—and with the same clarity and depth of knowledge he demonstrated in the bestselling Fermat’s Last Theorem—Aczel enriches all of us with a firm grounding in the scientific concepts we will need to appreciate the discoveries that will almost certainly spring forth when the full power of this great machine is finally unleashed.Will the Higgs boson make its breathlessly awaited appearance, confirming at last the Standard Model of particles and their interactions that is among the great theoretical achievements of twentieth-century physics? Will the hidden dimensions posited by string theory be revealed? Will we at last identify the nature of the dark matter that makes up more than 90 percent of the cosmos? With Present at the Creation, written by one of today’s finest popular interpreters of basic science, we can all follow the progress of an experiment that promises to greatly satisfy the curiosity of anyone who ever concurred with Einstein when he said, “I want to know God’s thoughts—the rest is details.”
Einstein's Miraculous Year
John J. Stachel - 1998
In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.
CRC Handbook of Chemistry and Physics
David R. Lide - 1984
This edition contains NEW tables on Properties of Ionic Liquids, Solubilities of Hydrocarbons in Sea Water, Solubility of Organic Compounds in Superheated Water, and Nutritive Value of Foods. It also updates many tables including Critical Constants, Heats of Vaporization, Aqueous Solubility of Organic Compounds, Vapor Pressure of Mercury, Scientific Abbreviations and Symbols, and Bond Dissociation Energies. The 88th Edition also presents a new Foreword written by Dr. Harold Kroto, a 1996 Nobel Laureate in Chemistry.
Euler's Gem: The Polyhedron Formula and the Birth of Topology
David S. Richeson - 2008
Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea.From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.
The Infinity Puzzle: Quantum Field Theory and the Hunt for an Orderly Universe
Frank Close - 2011
If found, the Higgs boson would help explain why everything has mass. But there’s more at stake—what we’re really testing is our capacity to make the universe reasonable. Our best understanding of physics is predicated on something known as quantum field theory. Unfortunately, in its raw form, it doesn’t make sense—its outputs are physically impossible infinite percentages when they should be something simpler, like the number 1. The kind of physics that the Higgs boson represents seeks to “renormalize” field theory, forcing equations to provide answers that match what we see in the real world.The Infinity Puzzle is the story of a wild idea on the road to acceptance. Only Close can tell it.
Einstein: His Life and Universe
Walter Isaacson - 2007
In this narrative, Walter Isaacson explains how his mind worked and the mysteries of the universe that he discovered.