Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles


Robert M. Eisberg - 1974
    Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.

The Theory of Everything: The Quest to Explain All Reality


Don Lincoln - 2018
    He was trying to find an equation that explained all physical reality - a theory of everything. He failed, but others have taken up the challenge in a remarkable quest that is shedding light on unsuspected secrets of the cosmos.Experimental physicist and award-winning educator Dr. Don Lincoln of the Fermi National Accelerator Laboratory takes you on this exciting journey in The Theory of Everything: The Quest to Explain All Reality. Suitable for the intellectually curious at all levels and assuming no background beyond basic high-school math, these 24 half-hour lectures cover recent developments at the forefront of particle physics and cosmology, while delving into the history of the centuries-long search for this holy grail of science.You trace the dream of a theory of everything through Newton, Maxwell, Einstein, Bohr, Schrödinger, Feynman, Gell-Mann, Weinberg, and other great physicists, charting their progress toward an all-embracing, unifying theory. Their resulting equations are the masterpieces of physics, which Dr. Lincoln explains in fascinating and accessible detail. Studying them is like touring a museum of great works of art - works that are progressing toward an ultimate, as-yet-unfinished masterpiece.Listening Length: 12 hours and 21 minutes

Advanced Engineering Mathematics


Dennis G. Zill - 1992
    A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0

Elementary Solid State Physics: Principles and Applications


M. Ali Omar - 1975
    I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.

Quantum Mechanics


Claude Cohen-Tannoudji - 1977
    Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.

Inorganic Chemistry: Principles of Structure and Reactivity


James E. Huheey - 1972
    Reorganized chapters on bonding, coordination chemistry and organometallic chemistry are also included.

Astronomy


Andrew Fraknoi - 2012
    The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.

Conceptual Physics


Paul G. Hewitt - 1971
    Hewitt's text is famous for engaging readers with analogies and imagery from real-world situations that build a strong conceptual understanding of physical principles ranging from classical mechanics to modern physics. With this strong foundation, readers are better equipped to understand the equations and formulas of physics, and motivated to explore the thought-provoking exercises and fun projects in each chapter. Included in the package is the workbook. Mechanics, Properties of Matter, Heat, Sound, Electricity and Magnetism, Light, Atomic and Nuclear Physics, Relativity. For all readers interested in conceptual physics.

The Meaning of Science


Tim Lewens - 2015
    Drawing on the insights of towering figures like Karl Popper and Thomas Kuhn, Lewens shows how key questions in science matter, often in personal, practical and political ways.

Quantum Mechanics and Experience


David Z. Albert - 1992
    Ever since physics first penetrated the atom, early in this century, what it found there has stood as a radical and unanswered challenge to many of our most cherished conceptions of nature. It has literally been called into question since then whether or not there are always objective matters of fact about the whereabouts of subatomic particles, or about the locations of tables and chairs, or even about the very contents of our thoughts. A new kind of uncertainty has become a principle of science.This book is an original and provocative investigation of that challenge, as well as a novel attempt at writing about science in a style that is simultaneously elementary and deep. It is a lucid and self-contained introduction to the foundations of quantum mechanics, accessible to anyone with a high school mathematics education, and at the same time a rigorous discussion of the most important recent advances in our understanding of that subject, some of which are due to the author himself.

Great Formulas Explained - Physics, Mathematics, Economics


Metin Bektas - 2013
    Each formula is explained gently and in great detail, including a discussion of all the quanitites involved and examples that will make clear how and where to apply it. On top of that, there are plenty of illustrations that support the explanations and make the reading experience even more vivid.The book covers a wide range of diverse topics: acoustics, explosions, hurricanes, pipe flow, car traffic, gravity, satellites, roller coasters, flight, conservation laws, trigonometry, equations, inflation, loans, and many more. From the author of "Statistical Snacks" and "Business Math Basics - Practical and Simple".

Einstein's Clocks, Poincaré's Maps: Empires of Time


Peter Galison - 2003
    And two giants at the foundations of modern science were converging, step-by-step, on the answer: Albert Einstein, an young, obscure German physicist experimenting with measuring time using telegraph networks and with the coordination of clocks at train stations; and the renowned mathematician Henri Poincaré, president of the French Bureau of Longitude, mapping time coordinates across continents. Each found that to understand the newly global world, he had to determine whether there existed a pure time in which simultaneity was absolute or whether time was relative.Esteemed historian of science Peter Galison has culled new information from rarely seen photographs, forgotten patents, and unexplored archives to tell the fascinating story of two scientists whose concrete, professional preoccupations engaged them in a silent race toward a theory that would conquer the empire of time.

How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival


David Kaiser - 2011
    But as MIT physicist and historian David Kaiser reveals, this cutting-edge field has a surprisingly psychedelic past. How the Hippies Saved Physics introduces us to a band of freewheeling physicists who defied the imperative to "shut up and calculate" and helped to rejuvenate modern physics.For physicists, the 1970s were a time of stagnation. Jobs became scarce, and conformity was encouraged, sometimes stifling exploration of the mysteries of the physical world. Dissatisfied, underemployed, and eternally curious, an eccentric group of physicists in Berkeley, California, banded together to throw off the constraints of the physics mainstream and explore the wilder side of science. Dubbing themselves the "Fundamental Fysiks Group," they pursued an audacious, speculative approach to physics. They studied quantum entanglement and Bell's Theorem through the lens of Eastern mysticism and psychic mind-reading, discussing the latest research while lounging in hot tubs. Some even dabbled with LSD to enhance their creativity. Unlikely as it may seem, these iconoclasts spun modern physics in a new direction, forcing mainstream physicists to pay attention to the strange but exciting underpinnings of quantum theory.A lively, entertaining story that illuminates the relationship between creativity and scientific progress, How the Hippies Saved Physics takes us to a time when only the unlikeliest heroes could break the science world out of its rut.

The Quantum World: Quantum Physics for Everyone


Kenneth W. Ford - 2004
    Ford shows us in The Quantum World, the laws governing the very small and the very swift defy common sense and stretch our minds to the limit. Drawing on a deep familiarity with the discoveries of the twentieth century, Ford gives an appealing account of quantum physics that will help the serious reader make sense of a science that, for all its successes, remains mysterious. In order to make the book even more suitable for classroom use, the author, assisted by Diane Goldstein, has included a new section of Quantum Questions at the back of the book. A separate answer manual to these 300+ questions is available; visit The Quantum World website for ordering information.There is also a cloth edition of this book, which does not include the Quantum Questions included in this paperback edition.

Pythagoras's Trousers: God, Physics, and the Gender War


Margaret Wertheim - 1995
    From its inception, Margaret Wertheim shows, physics has been an overwhelmingly male-dominated activity; she argues that gender inequity in physics is a result of the religious origins of the enterprise.Pythagoras' Trousers is a highly original history of one of science's most powerful disciplines. It is also a passionate argument for the need to involve both women and men in the process of shaping the technologies from the next generation of physicists.