Text Mining with R: A Tidy Approach


Julia Silge - 2017
    With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective.The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.Learn how to apply the tidy text format to NLPUse sentiment analysis to mine the emotional content of textIdentify a document's most important terms with frequency measurementsExplore relationships and connections between words with the ggraph and widyr packagesConvert back and forth between R's tidy and non-tidy text formatsUse topic modeling to classify document collections into natural groupsExamine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages

The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies


Erik Brynjolfsson - 2014
    Digital technologies—with hardware, software, and networks at their core—will in the near future diagnose diseases more accurately than doctors can, apply enormous data sets to transform retailing, and accomplish many tasks once considered uniquely human.In The Second Machine Age MIT’s Erik Brynjolfsson and Andrew McAfee—two thinkers at the forefront of their field—reveal the forces driving the reinvention of our lives and our economy. As the full impact of digital technologies is felt, we will realize immense bounty in the form of dazzling personal technology, advanced infrastructure, and near-boundless access to the cultural items that enrich our lives.Amid this bounty will also be wrenching change. Professions of all kinds—from lawyers to truck drivers—will be forever upended. Companies will be forced to transform or die. Recent economic indicators reflect this shift: fewer people are working, and wages are falling even as productivity and profits soar.Drawing on years of research and up-to-the-minute trends, Brynjolfsson and McAfee identify the best strategies for survival and offer a new path to prosperity. These include revamping education so that it prepares people for the next economy instead of the last one, designing new collaborations that pair brute processing power with human ingenuity, and embracing policies that make sense in a radically transformed landscape.A fundamentally optimistic book, The Second Machine Age alters how we think about issues of technological, societal, and economic progress.

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

The AI Delusion


Gary Smith - 2018
    The Computer Revolution may be even more life-changing than the Industrial Revolution. We can do things with computers that could never be done before, and computers can do things for us that could never be done before.But our love of computers should not cloud our thinking about their limitations.We are told that computers are smarter than humans and that data mining can identify previously unknown truths, or make discoveries that will revolutionize our lives. Our lives may well be changed, but not necessarily for the better. Computers are very good at discovering patterns, but are uselessin judging whether the unearthed patterns are sensible because computers do not think the way humans think.We fear that super-intelligent machines will decide to protect themselves by enslaving or eliminating humans. But the real danger is not that computers are smarter than us, but that we think computers are smarter than us and, so, trust computers to make important decisions for us.The AI Delusion explains why we should not be intimidated into thinking that computers are infallible, that data-mining is knowledge discovery, and that black boxes should be trusted.

Introduction to Probability


Joseph K. Blitzstein - 2014
    The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo MCMC. Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Learning Python


Mark Lutz - 2003
    Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.

Python 3 Object Oriented Programming


Dusty Phillips - 2010
    Many examples are taken from real-world projects. The book focuses on high-level design as well as the gritty details of the Python syntax. The provided exercises inspire the reader to think about his or her own code, rather than providing solved problems. If you're new to Object Oriented Programming techniques, or if you have basic Python skills and wish to learn in depth how and when to correctly apply Object Oriented Programming in Python, this is the book for you. If you are an object-oriented programmer for other languages, you too will find this book a useful introduction to Python, as it uses terminology you are already familiar with. Python 2 programmers seeking a leg up in the new world of Python 3 will also find the book beneficial, and you need not necessarily know Python 2.

Advances in Financial Machine Learning


Marcos López de Prado - 2018
    Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence


Kate Crawford - 2020
    It draws our attention away from the bright shiny objects of the new colonialism through elucidating the social, material and political dimensions of Artificial Intelligence.”—Geoffrey C. Bowker, University of California, Irvine What happens when artificial intelligence saturates political life and depletes the planet? How is AI shaping our understanding of ourselves and our societies? In this book Kate Crawford reveals how this planetary network is fueling a shift toward undemocratic governance and increased racial, gender, and economic inequality. Drawing on more than a decade of research, award‑winning science, and technology, Crawford reveals how AI is a technology of extraction: from the energy and minerals needed to build and sustain its infrastructure, to the exploited workers behind “automated” services, to the data AI collects from us.    Rather than taking a narrow focus on code and algorithms, Crawford offers us a political and a material perspective on what it takes to make artificial intelligence and where it goes wrong. While technical systems present a veneer of objectivity, they are always systems of power. This is an urgent account of what is at stake as technology companies use artificial intelligence to reshape the world.

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again


Eric J. Topol - 2019
    The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard.Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

OpenIntro Statistics


David M. Diez - 2012
    Our inaugural effort is OpenIntro Statistics. Probability is optional, inference is key, and we feature real data whenever possible. Files for the entire book are freely available at openintro.org, and anybody can purchase a paperback copy from amazon.com for under $10.The future for OpenIntro depends on the involvement and enthusiasm of our community. Visit our website, openintro.org. We provide free course management tools, including an online question bank, utilities for creating course quizzes, and many other helpful resources.CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED ‘AS IS’ AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.Can’t find it here? Search Amazon.com Search: All Products Apparel & AccessoriesBabyBeautyBooksCamera & PhotoCell Phones & ServiceClassical MusicComputersComputer & Video GamesDVDElectronicsGourmet FoodHome & GardenMiscellaneousHealth & Personal CareJewelry & WatchesKitchen & HousewaresMagazine SubscriptionsMusicMusical InstrumentsSoftwareSports & OutdoorsTools & HardwareToys & GamesVHS Keywords:

Spark: The Definitive Guide: Big Data Processing Made Simple


Bill Chambers - 2018
    With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark’s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Experimentation Works: The Surprising Power of Business Experiments


Stefan H. Thomke - 2020
    Whether it's improving customer experiences, trying out new business models, or developing new products, even the most experienced managers often get it wrong. This is especially true in the online world, where predicting customer behavior is virtually impossible.Managers can, however, discover whether a new product, service, or business model will fail or succeed--by subjecting it to rigorous experimentation. Think about it. A pharmaceutical company would never introduce a new drug without first conducting a round of experiments based on established scientific protocols. Yet that's essentially what many companies do when they roll out new products and services.As Harvard Business School professor Stefan Thomke shows in this eye-opening and essential book, the "best guess" approach to innovation is changing fast. There are now leading companies that conduct more than ten thousand online controlled experiments annually, engaging millions of users. These organizations have discovered that an "experiment with everything" approach has a big payoff, giving them a considerable competitive advantage.How can you do this at your company? Leaders and managers need to create an "experimentation organization" that masters the science of testing and puts the discipline of experimentation at the center of the innovation process. It used to take companies years to build the infrastructure and develop the expertise to run hundreds of experiments each day. But Thomke shows how, with advances in technology, these capabilities are at the fingertips of almost any business professional. By combining the power of software and the rigor of controlled experiments, today's managers can make better decisions, create better customer experiences, and generate huge financial returns.Filled with engaging and instructive stories of leading experimentation organizations, Experimentation Works will be your guidebook to a truly new way of thinking and innovating.

The Numerati


Stephen Baker - 2008
    Now, in one of the greatest undertakings of the twenty-first century, a savvy group of mathematicians and computer scientists is beginning to sift through this data to dissect us and map out our next steps. Their goal? To manipulate our behavior -- what we buy, how we vote -- without our even realizing it.In this tour de force of original reporting and analysis, journalist Stephen Baker provides us with a fascinating guide to the world we're all entering -- and to the people controlling that world. The Numerati have infiltrated every realm of human affairs, profiling us as workers, shoppers, patients, voters, potential terrorists -- and lovers. The implications are vast. Our privacy evaporates. Our bosses can monitor and measure our every move (then reward or punish us). Politicians can find the swing voters among us, by plunking us all into new political groupings with names like "Hearth Keepers" and "Crossing Guards." It can sound scary. But the Numerati can also work on our behalf, diagnosing an illness before we're aware of the symptoms, or even helping us find our soul mate. Surprising, enlightening, and deeply relevant, The Numerati shows how a powerful new endeavor -- the mathematical modeling of humanity -- will transform every aspect of our lives. STEPHEN BAKER has written for BusinessWeek for over twenty years, covering Mexico and Latin America, the Rust Belt, European technology, and a host of other topics, including blogs, math, and nanotechnology. But he's always considered himself a foreign correspondent. This, he says, was especially useful as he met the Numerati. "While I came from the world of words, they inhabited the symbolic realms of math and computer science. This was foreign to me. My reporting became an anthropological mission." Baker has written for many publications, including the Wall Street Journal, the Los Angeles Times, and the Boston Globe. He won an Overseas Press Club Award for his portrait of the rising Mexican auto industry. He is the coauthor of blogspotting.net, featured by the New York Times as one of fifty blogs to watch.

Creating a Data-Driven Organization: Practical Advice from the Trenches


Carl Anderson - 2015
    This practical book shows you how true data-drivenness involves processes that require genuine buy-in across your company, from analysts and management to the C-Suite and the board.Through interviews and examples from data scientists and analytics leaders in a variety of industries, author Carl Anderson explains the analytics value chain you need to adopt when building predictive business models—from data collection and analysis to the insights and leadership that drive concrete actions. You’ll learn what works and what doesn’t, and why creating a data-driven culture throughout your organization is essential. Start from the bottom up: learn how to collect the right data the right way Hire analysts with the right skills, and organize them into teams Examine statistical and visualization tools, and fact-based story-telling methods Collect and analyze data while respecting privacy and ethics Understand how analysts and their managers can help spur a data-driven culture Learn the importance of data leadership and C-level positions such as chief data officer and chief analytics officer