The Algorithm Design Manual
Steven S. Skiena - 1997
Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.
Multivariable Calculus
James Stewart - 1991
In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.
Practical Algebra: A Self-Teaching Guide
Peter H. Selby - 1974
Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Introduction to Mathematical Philosophy
Bertrand Russell - 1918
In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.
The Power of Vedic Maths
Atul Gupta - 2013
The absence of a book, explaining the techniques in a simple language, has been felt acutely for a long time. This book has been written using a step-by-step approach, and attempts to fill the existing void. It includes several solved problems in addition to 1000 practice problems with answers. It also includes a special chapter which shows the application of the techniques to problems set in competitive exams like CAT, CET etc.People from all walks of life including school and college students, teachers, parents and also those from non-mathematical areas of study will discover the joys of solving mathematical problems using the wonderful set of techniques called Vedic Maths.
Theory of Games and Economic Behavior
John von Neumann - 1944
What began more than sixty years ago as a modest proposal that a mathematician and an economist write a short paper together blossomed, in 1944, when Princeton University Press published Theory of Games and Economic Behavior. In it, John von Neumann and Oskar Morgenstern conceived a groundbreaking mathematical theory of economic and social organization, based on a theory of games of strategy. Not only would this revolutionize economics, but the entirely new field of scientific inquiry it yielded--game theory--has since been widely used to analyze a host of real-world phenomena from arms races to optimal policy choices of presidential candidates, from vaccination policy to major league baseball salary negotiations. And it is today established throughout both the social sciences and a wide range of other sciences.This sixtieth anniversary edition includes not only the original text but also an introduction by Harold Kuhn, an afterword by Ariel Rubinstein, and reviews and articles on the book that appeared at the time of its original publication in the New York Times, tthe American Economic Review, and a variety of other publications. Together, these writings provide readers a matchless opportunity to more fully appreciate a work whose influence will yet resound for generations to come.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
Sun Certified Programmer & Developer for Java 2 Study Guide (Exam 310-035 & 310-027)
Kathy Sierra - 2002
More than 250 challenging practice questions have been completely revised to closely model the format, tone, topics, and difficulty of the real exam. An integrated study system based on proven pedagogy, exam coverage includes step-by-step exercises, special Exam Watch notes, On-the-Job elements, and Self Tests with in-depth answer explanations to help reinforce and teach practical skills.Praise for the author:"Finally A Java certification book that explains everything clearly. All you need to pass the exam is in this book."--Solveig Haugland, Technical Trainer and Former Sun Course Developer"Who better to write a Java study guide than Kathy Sierra, the reigning queen of Java instruction? Kathy Sierra has done it again--here is a study guide that almost guarantees you a certification "--James Cubeta, Systems Engineer, SGI"The thing I appreciate most about Kathy is her quest to make us all remember that we are teaching people and not just lecturing about Java. Her passion and desire for the highest quality education that meets the needs of the individual student is positively unparalleled at SunEd. Undoubtedly there are hundreds of students who have benefited from taking Kathy's classes."--Victor Peters, founder Next Step Education & Software Sun Certified Java Instructor"I want to thank Kathy for the EXCELLENT Study Guide. The book is well written, every concept is clearly explained using a real life example, and the book states what you specifically need to know for the exam. The way it's written, you feel that you're in a classroom and someone is actually teaching you the difficult concepts, but not in a dry, formal manner. The questions at the end of the chapters are also REALLY good, and I am sure they will help candidates pass the test. Watch out for this Wickedly Smart book."-Alfred Raouf, Web Solution Developer, Kemety.Net"The Sun Certification exam was certainly no walk in the park but Kathy's material allowed me to not only pass the exam, but Ace it "--Mary Whetsel, Sr. Technology Specialist, Application Strategy and Integration, The St. Paul Companies
Discrete Mathematics
Richard Johnsonbaugh - 1984
Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.
A Mathematical Introduction to Logic
Herbert B. Enderton - 1972
The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
The Universal History of Numbers: From Prehistory to the Invention of the Computer
Georges Ifrah - 1981
A riveting history of counting and calculating, from the time of the cave dwellers to the twentieth century, this fascinating volume brings numbers to thrilling life, explaining their development in human terms, the intriguing situations that made them necessary, and the brilliant achievements in human thought that they made possible. It takes us through the numbers story from Europe to China, via ancient Greece and Rome, Mesopotamia, Latin America, India, and the Arabic countries. Exploring the many ways civilizations developed and changed their mathematical systems, Ifrah imparts a unique insight into the nature of human thought–and into how our understanding of numbers and the ways they shape our lives have changed and grown over thousands of years.