R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Planning for Big Data


Edd Wilder-James - 2004
    From creating new data-driven products through to increasing operational efficiency, big data has the potential to makeyour organization both more competitive and more innovative.As this emerging field transitions from the bleeding edge to enterprise infrastructure, it's vital to understand not only the technologies involved, but the organizational and cultural demands of being data-driven.Written by O'Reilly Radar's experts on big data, this anthology describes:- The broad industry changes heralded by the big data era- What big data is, what it means to your business, and how to start solving data problems- The software that makes up the Hadoop big data stack, and the major enterprise vendors' Hadoop solutions- The landscape of NoSQL databases and their relative merits- How visualization plays an important part in data work

Superintelligence: Paths, Dangers, Strategies


Nick Bostrom - 2014
    The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. If machine brains surpassed human brains in general intelligence, then this new superintelligence could become extremely powerful--possibly beyond our control. As the fate of the gorillas now depends more on humans than on the species itself, so would the fate of humankind depend on the actions of the machine superintelligence.But we have one advantage: we get to make the first move. Will it be possible to construct a seed Artificial Intelligence, to engineer initial conditions so as to make an intelligence explosion survivable? How could one achieve a controlled detonation?

Advances in Financial Machine Learning


Marcos López de Prado - 2018
    Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.In the book, readers will learn how to:Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting.Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Spark: The Definitive Guide: Big Data Processing Made Simple


Bill Chambers - 2018
    With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark’s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

The Guru's Guide to Transact-Sql


Ken Henderson - 2000
    Beginners and intermediate developers will appreciate the comprehensive tutorial that walks step-by-step through building a real client/server database, from concept to deployment and beyond -- and points out key pitfalls to avoid throughout the process. Experienced users will appreciate the book's comprehensive coverage of the Transact-SQL language, from basic to advanced level; detailed ODBC database access information; expert coverage of concurrency control, and more. The book includes thorough, up-to-the-minute guidance on building multi-tier applications; SQL Server performance tuning; and other crucial issues for advanced developers. For all database developers, system administrators, and Web application developers who interact with databases in Microsoft-centric environments.

Composing Software


Eric Elliott - 2018
    Most developers have a limited understanding of compositional techniques. It's time for that to change.In "Composing Software", Eric Elliott shares the fundamentals of composition, including both function composition and object composition, and explores them in the context of JavaScript. The book covers the foundations of both functional programming and object oriented programming to help the reader better understand how to build and structure complex applications using simple building blocks.You'll learn: • Functional programming • Object composition • How to work with composite data structures • Closures • Higher order functions • Functors (e.g., array.map) • Monads (e.g., promises) • Transducers • LensesAll of this in the context of JavaScript, the most used programming language in the world. But the learning doesn't stop at JavaScript. You'll be able to apply these lessons to any language. This book is about the timeless principles of software composition and its lessons will outlast the hot languages and frameworks of today. Unlike most programming books, this one may still be relevant 20 years from now.This book began life as a popular blog post series that attracted hundreds of thousands of readers and influenced the way software is built at many high growth tech startups and fortune 500 companies.

Naked Statistics: Stripping the Dread from the Data


Charles Wheelan - 2012
    How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more.For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

Absolute Beginner's Guide to C


Greg Perry - 1993
    This bestseller talks to readers at their level, explaining every aspect of how to get started and learn the C language quickly. Readers also find out where to learn more about C. This book includes tear-out reference card of C functions and statements, a hierarchy chart, and other valuable information. It uses special icons, notes, clues, warnings, and rewards to make understanding easier. And the clear and friendly style presumes no programming knowledge.

The Algorithmic Leader: How to Be Smart When Machines Are Smarter Than You


Mike Walsh - 2019
    

Introducing Microsoft SQL Server 2012


Ross Mistry - 2012
    This book is for anyone who has an interest in SQL Server 2012 and wants to understand its capabilities, including database administrators, application developers, and technical decision makers.

The Language of SQL


Larry Rockoff - 2010
    For SQL beginners, it's more important for a book to focus on general concepts and offer clear explanations and examples of what the various statements can accomplish. This is that beginner book. A number of features make The LANGUAGE OF SQL unique among introductory SQL books. First, you will not be required to download software or sit with a computer as you read the text. The intent of this book is to provide examples of SQL usage that can be understood simply by reading them. Second, topics are organized in an intuitive and logical sequence. SQL keywords are introduced one at a time, allowing you to build on your prior understanding as you encounter new words and concepts. Finally, this book covers the syntax of three widely used databases: Microsoft SQL Server, MySQL, and Oracle, with special "Database Differences" boxes that will show you any differences in the syntax among those three databases, as well as instructions on how to obtain and install free versions of the databases. This is the only book you'll need to gain a working knowledge of SQL and relational databases.

Algorithms Illuminated (Part 1): The Basics


Tim Roughgarden - 2017
    Their applications range from network routing and computational genomics to public-key cryptography and database system implementation. Studying algorithms can make you a better programmer, a clearer thinker, and a master of technical interviews. Algorithms Illuminated is an accessible introduction to the subject---a transcript of what an expert algorithms tutor would say over a series of one-on-one lessons. The exposition is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. Part 1 of the book series covers asymptotic analysis and big-O notation, divide-and-conquer algorithms and the master method, randomized algorithms, and several famous algorithms for sorting and selection.

Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)


Jiawei Han - 2000
    Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site

Computing machinery and intelligence


Alan Turing - 1950
    The paper, published in 1950 in Mind, was the first to introduce his concept of what is now known as the Turing test to the general public.Published in Mind 49: page 433-460.(Source: Wikipedia)