Book picks similar to
Classical Invariant Theory by Peter J. Olver
08-general-algebra
13-commutative-algebra
14-algebraic-geometry
20-group-theory
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Calculated Risks: How to Know When Numbers Deceive You
Gerd Gigerenzer - 2002
G. Wells predicted that statistical thinking would be as necessary for citizenship in a technological world as the ability to read and write. But in the twenty-first century, we are often overwhelmed by a baffling array of percentages and probabilities as we try to navigate in a world dominated by statistics. Cognitive scientist Gerd Gigerenzer says that because we haven't learned statistical thinking, we don't understand risk and uncertainty. In order to assess risk -- everything from the risk of an automobile accident to the certainty or uncertainty of some common medical screening tests -- we need a basic understanding of statistics.Astonishingly, doctors and lawyers don't understand risk any better than anyone else. Gigerenzer reports a study in which doctors were told the results of breast cancer screenings and then were asked to explain the risks of contracting breast cancer to a woman who received a positive result from a screening. The actual risk was small because the test gives many false positives. But nearly every physician in the study overstated the risk. Yet many people will have to make important health decisions based on such information and the interpretation of that information by their doctors.Gigerenzer explains that a major obstacle to our understanding of numbers is that we live with an illusion of certainty. Many of us believe that HIV tests, DNA fingerprinting, and the growing number of genetic tests are absolutely certain. But even DNA evidence can produce spurious matches. We cling to our illusion of certainty because the medical industry, insurance companies, investment advisers, and election campaigns have become purveyors of certainty, marketing it like a commodity.To avoid confusion, says Gigerenzer, we should rely on more understandable representations of risk, such as absolute risks. For example, it is said that a mammography screening reduces the risk of breast cancer by 25 percent. But in absolute risks, that means that out of every 1,000 women who do not participate in screening, 4 will die; while out of 1,000 women who do, 3 will die. A 25 percent risk reduction sounds much more significant than a benefit that 1 out of 1,000 women will reap.This eye-opening book explains how we can overcome our ignorance of numbers and better understand the risks we may be taking with our money, our health, and our lives.
Math for Mystics: From the Fibonacci Sequence to Luna's Labyrinth to the Golden Section and Other Secrets of Sacred Geometry
Renna Shesso - 2007
Whether you were the king's court astrologer or a farmer marking the best time for planting, timekeeping and numbers really mattered. Mistake a numerical pattern of petals and you could be poisoned. Lose the rhythm of a sacred dance or the meter of a ritually told story and the intricately woven threads that hold life together were spoiled. Ignore the celestial clock of equinoxes and solstices, and you'd risk being caught short of food for the winter. Shesso's friendly tone and clear grasp of the information make the math "go down easy" in this marvelous book.BONUS: This book has over 100 illustrations! Click on the Google Preview link to get a glimpse.Excerpt from Math for Mystics: “It’s our collective malaise: Post-Traumatic Math Disorder.“Yet despite how we personally feel about mathematics, our distant ancestors willingly used numbers as pathways into the great patterns of Nature, avenues to understanding the Universe and their own place in it. Many ancient cultures had specific gods and goddesses they credited with inventing mathematical skills. With the aid of divine inspiration and assistance, humans nourished this numerical invention, continually pushing their skills and seeking greater clarity of expression. “Our starting point may seem like a Zero. But for now, before looking at numbers and math, let’s simply see it as a circle. No matter what our spiritual practice, we each live within the circle of creation, each within the circle—the cohesiveness—of our own form...” From John Michael Greer, Grand Archdruid, Ancient Order of Druids in America and author of The Druidry Handbook:“As thoughtful as it is readable, Renna Shesso’s Math for Mystics is the book I wish I had when I first started trying to make sense of the mathematics that underlie so much of modern magic and traditional occult lore. Not the least of its virtues is the way it makes magical number theory accessible even to those who think they don’t like or can’t handle math. It provides a first-rate introduction to a fairly neglected branch of magical lore.”
Numbers Guide: The Essentials of Business Numeracy
Richard Stutely - 1998
In addition to general advice on basic numeracy, the guide points out common errors and explains the recognized techniques for solving financial problems, analysing information of any kind, and effective decision making. Over one hundred charts, graphs, tables, and feature boxes highlight key points. Also included is an A-Z dictionary of terms covering everything from amortization to zero-sum game. Whatever your business, The Economist Numbers Guide will prove invaluable.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds
Mitchel Resnick - 1994
Mitchel Resnick's book is one of the very few in the field of computing with an interdisciplinary discourse that can reach beyond the technical community to philosophers, psychologists, and historians and sociologists of science." -- Sherry Turkle, Professor, Program in Science, Technology, and Society, Massachusetts Institute of Technology "Resnick's work provides a rare glimpse of what I am sure will become a new paradigm for research in education.
Euclid's Elements
Euclid
Heath's translation of the thirteen books of Euclid's Elements. In keeping with Green Lion's design commitment, diagrams have been placed on every spread for convenient reference while working through the proofs; running heads on every page indicate both Euclid's book number and proposition numbers for that page; and adequate space for notes is allowed between propositions and around diagrams. The all-new index has built into it a glossary of Euclid's Greek terms.Heath's translation has stood the test of time, and, as one done by a renowned scholar of ancient mathematics, it can be relied upon not to have inadvertantly introduced modern concepts or nomenclature. We have excised the voluminous historical and scholarly commentary that swells the Dover edition to three volumes and impedes classroom use of the original text. The single volume is not only more convenient, but less expensive as well.
Mathematician's Delight
W.W. Sawyer - 1943
Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject.'W.W. Sawyer's deep understanding of how we learn and his lively, practical approach have made this an ideal introduction to mathematics for generations of readers. By starting at the level of simple arithmetic and algebra and then proceeding step by step through graphs, logarithms and trigonometry to calculus and the dizzying world of imaginary numbers, the book takes the mystery out of maths. Throughout, Sawyer reveals how theory is subordinate to the real-life applications of mathematics - the Pyramids were built on Euclidean principles three thousand years before Euclid formulated them - and celebrates the sheer intellectual stimulus of mathematics at its best.
Game Theory
Drew Fudenberg - 1991
The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.--mitpress.mit.edu
The Poincaré Conjecture: In Search of the Shape of the Universe
Donal O'Shea - 2007
He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
Mathematics and the Imagination
Edward Kasner - 1940
But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.
Computational Geometry: Algorithms and Applications
Mark de Berg - 1997
The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In the second edition, besides revisions to the first edition, a number of new exercises have been added.
Islamic Design: A Genius for Geometry
Daud Sutton - 2007
Harmony is central. There are two key aspects to the visual structure of Islamic design, calligraphy using Arabic script-one of the world's great calligraphic traditions-and abstract ornamentation using a varied but remarkably integrated visual language. This art of pure ornament revolves around two central themes; crystalline geometric patterns, the harmonic and symmetrical subdivision of the plane giving rise to intricately interwoven designs that speak of infinity and the omnipresent center; and idealized plant form, spiraling tendrils, leaves, buds and flowers embodying organic life and rhythm.1. WIDE APPEAL: Anyone interested in science, mathematics, design, architecture, and the natural world.2. AUTHORITATIVE: A compelling blend of scholarship and visual presentation, packs an enormous amount of information into a short space.3. BEAUTIFUL PACKAGE: A bargain at $10.00. Winner of First Prize for Nonfiction at the New York Book Show4. SERIES PURPOSE: All are aimed at bringing ancient wisdom forward into the 21st century.5. INSPIRING: The perfect entrée into a challenging topic; will inspire other reading.
Short-Cut Math
Gerard W. Kelly - 1969
Short-Cut Math is a concise, remarkably clear compendium of about 150 math short-cuts — timesaving tricks that provide faster, easier ways to add, subtract, multiply, and divide.By using the simple foolproof methods in this volume, you can double or triple your calculation speed — even if you always hated math in school. Here's a sampling of the amazingly effective techniques you will learn in minutes: Adding by 10 Groups; No-Carry Addition; Subtraction Without Borrowing; Multiplying by Aliquot Parts; Test for Divisibility by Odd and Even Numbers; Simplifying Dividends and Divisors; Fastest Way to Add or Subtract Any Pair of Fractions; Multiplying and Dividing with Mixed Numbers, and more.The short-cuts in this book require no special math ability. If you can do ordinary arithmetic, you will have no trouble with these methods. There are no complicated formulas or unfamiliar jargon — no long drills or exercises. For each problem, the author provides an explanation of the method and a step-by-step solution. Then the short-cut is applied, with a proof and an explanation of why it works.Students, teachers, businesspeople, accountants, bank tellers, check-out clerks — anyone who uses numbers and wishes to increase his or her speed and arithmetical agility, can benefit from the clear, easy-to-follow techniques given here.
Discrete Mathematical Structures with Applications to Computer Science
Jean-Paul Tremblay - 1975