Introduction to Automata Theory, Languages, and Computation


John E. Hopcroft - 1979
    With this long-awaited revision, the authors continue to present the theory in a concise and straightforward manner, now with an eye out for the practical applications. They have revised this book to make it more accessible to today's students, including the addition of more material on writing proofs, more figures and pictures to convey ideas, side-boxes to highlight other interesting material, and a less formal writing style. Exercises at the end of each chapter, including some new, easier exercises, help readers confirm and enhance their understanding of the material. *NEW! Completely rewritten to be less formal, providing more accessibility to todays students. *NEW! Increased usage of figures and pictures to help convey ideas. *NEW! More detail and intuition provided for definitions and proofs. *NEW! Provides special side-boxes to present supplemental material that may be of interest to readers. *NEW! Includes more exercises, including many at a lower level. *NEW! Presents program-like notation for PDAs and Turing machines. *NEW! Increas

Old Testament Survey


Paul R. House - 1992
    These are combined with the first edition’s focus on literature and narrative, and an increased amount of improved maps are also included. In all, the book charts every major element that unifies the Old Testament, making it an excellent companion for Bible reading.Any student desiring a thorough and time-tested overview of the Bible’s first half will find it in this updated edition of Old Testament Survey.

PROLOG: Programming for Artificial Intelligence


Ivan Bratko - 1986
    Divided into two parts, the first part of the book introduces the programming language Prolog, while the second part teaches Artificial Intelligence using Prolog as a tool for the implementation of AI techniques. Prolog has its roots in logic, however the main aim of this book is to teach Prolog as a practical programming tool. This text therefore concentrates on the art of using the basic mechanisms of Prolog to solve interesting problems. The third edition has been fully revised and extended to provide an even greater range of applications, which further enhance its value as a self-contained guide to Prolog, AI or AI Programming for students and professional programmers alike.

Modern Database Management


Jeffrey A. Hoffer - 1994
    Intended for professional development programs in introductory database management.

Design and Analysis of Experiments


Douglas C. Montgomery - 1976
     Douglas Montgomery arms readers with the most effective approach for learning how to design, conduct, and analyze experiments that optimize performance in products and processes. He shows how to use statistically designed experiments to obtain information for characterization and optimization of systems, improve manufacturing processes, and design and develop new processes and products. You will also learn how to evaluate material alternatives in product design, improve the field performance, reliability, and manufacturing aspects of products, and conduct experiments effectively and efficiently. Discover how to improve the quality and efficiency of working systems with this highly-acclaimed book. This 6th Edition: Places a strong focus on the use of the computer, providing output from two software products: Minitab and DesignExpert. Presents timely, new examples as well as expanded coverage on adding runs to a fractional factorial to de-alias effects. Includes detailed discussions on how computers are currently used in the analysis and design of experiments. Offers new material on a number of important topics, including follow-up experimentation and split-plot design. Focuses even more sharply on factorial and fractional factorial design.

Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems


Peter Dayan - 2001
    This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory.The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Introduction to Machine Learning with Python: A Guide for Data Scientists


Andreas C. Müller - 2015
    If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills

Are We Spiritual Machines?: Ray Kurzweil vs. the Critics of Strong AI


Ray Kurzweil - 2001
    In this debate with his critics, including several Discovery Institute Fellows, Kurzweil defends his views and sets the stage for the central question: "What does it mean to be human?"

Data Structures and Algorithms in Python


Michael T. Goodrich - 2012
     Data Structures and Algorithms in Python is the first mainstream object-oriented book available for the Python data structures course. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.

Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

HTML 4 for Dummies


Ed Tittel - 1995
    HTML 4 For Dummies, now in its 5th edition, will show you the basics of working with this language as well as advanced skills for all-around knowledge. HTML is used to create Web documents. As a standard issued by the World Wide Web Consortium, it is used by almost everyone to create and edit Web pages. HTML is capable of:Creating a Web site Inserting designs to a Web page Running on both PCs and Macs The new edition of HTML 4 For Dummies contains nearly 50% more content than its previous editions, and covers a wide range of material, including: Planning a Web site to avoid underperformanceCreating and viewing a Web page Working with text, tables, lists, and links Adding style to your page with images, colors, and fonts Managing layout Controlling positioning and appearance using CSS Integrating scripts with HTML Designing an eBay auction page Helpful advices and tips, as well as warnings about pitfalls Complete with a 6-page tear-out colored reference sheet, HTML 4 For Dummies is the most comprehensive HTML guide yet. Written by a computer expert and author of over 120 books, including the previous editions of the bestselling HTML 4 For Dummies, this straightforward, fun guide will aid you through making and editing beautiful Web pages.

Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

Windows Internals, Part 1: Covering Windows Server 2008 R2 and Windows 7


Mark E. Russinovich - 2012
    Led by three renowned internals experts, this classic guide is fully updated for Windows 7 and Windows Server 2008 R2—and now presents its coverage in two volumes.As always, you get critical insider perspectives on how Windows operates. And through hands-on experiments, you’ll experience its internal behavior firsthand—knowledge you can apply to improve application design, debugging, system performance, and support.In Part 1, you will:Understand how core system and management mechanisms work—including the object manager, synchronization, Wow64, Hyper-V, and the registryExamine the data structures and activities behind processes, threads, and jobsGo inside the Windows security model to see how it manages access, auditing, and authorizationExplore the Windows networking stack from top to bottom—including APIs, BranchCache, protocol and NDIS drivers, and layered servicesDig into internals hands-on using the kernel debugger, performance monitor, and other tools

Calculus: Early Transcendentals


James Stewart - 1995
    Stewart's Calculus is successful throughout the world because he explains the material in a way that makes sense to a wide variety of readers. His explanations make ideas come alive, and his problems challenge, to reveal the beauty of calculus. Stewart's examples stand out because they are not just models for problem solving or a means of demonstrating techniques--they also encourage readers to develp an analytic view of the subject. This edition includes new problems, examples, and projects. This version of Stewart's book introduced exponential and logarithmic functions in the first chapter and their limits and derivatives are found in Chapters 2 and 3.

Grokking Deep Learning


Andrew W. Trask - 2017
    Loosely based on neuron behavior inside of human brains, these systems are rapidly catching up with the intelligence of their human creators, defeating the world champion Go player, achieving superhuman performance on video games, driving cars, translating languages, and sometimes even helping law enforcement fight crime. Deep Learning is a revolution that is changing every industry across the globe.Grokking Deep Learning is the perfect place to begin your deep learning journey. Rather than just learn the “black box” API of some library or framework, you will actually understand how to build these algorithms completely from scratch. You will understand how Deep Learning is able to learn at levels greater than humans. You will be able to understand the “brain” behind state-of-the-art Artificial Intelligence. Furthermore, unlike other courses that assume advanced knowledge of Calculus and leverage complex mathematical notation, if you’re a Python hacker who passed high-school algebra, you’re ready to go. And at the end, you’ll even build an A.I. that will learn to defeat you in a classic Atari game.