Book picks similar to
Surfaces by H. Brian Griffiths
mathematics
math
amaths
maths
Statistics for Management
Richard I. Levin - 1978
Like its predecessors, the seventh edition includes the absolute minimum of mathematical/statistical notation necessary to teach the material. Concepts are fully explained in simple, easy-to-understand language as they are presented, making the book an excellent source from which to learn and teach. After each discussion, readers are guided through real-world examples to show how book principles work in professional practice. Includes easy-to-understand explanations of difficult statistical topics, such as sampling distributions, relationship between confidence level and confidence interval, interpreting r-square. A complete package of teaching/learning aids is provided in every chapter, including chapter review exercises, chapter concepts tests,"Statistics at Work" conceptual cases, "Computer Database Exercises," "From the Textbook to the Real-World Examples." This ISBN is in two volumes Part A and Part B.
The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser
Jason Rosenhouse - 2009
Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.
Calculus for Dummies
Mark Ryan - 2003
Others who have no intention of ever studying the subject have this notion that calculus is impossibly difficult unless you happen to be a direct descendant of Einstein. Well, the good news is that you can master calculus. It's not nearly as tough as its mystique would lead you to think. Much of calculus is really just very advanced algebra, geometry, and trig. It builds upon and is a logical extension of those subjects. If you can do algebra, geometry, and trig, you can do calculus.Calculus For Dummies is intended for three groups of readers:Students taking their first calculus course - If you're enrolled in a calculus course and you find your textbook less than crystal clear, this is the book for you. It covers the most important topics in the first year of calculus: differentiation, integration, and infinite series.Students who need to brush up on their calculus to prepare for other studies - If you've had elementary calculus, but it's been a couple of years and you want to review the concepts to prepare for, say, some graduate program, Calculus For Dummies will give you a thorough, no-nonsense refresher course.Adults of all ages who'd like a good introduction to the subject - Non-student readers will find the book's exposition clear and accessible. Calculus For Dummies takes calculus out of the ivory tower and brings it down to earth. This is a user-friendly math book. Whenever possible, the author explains the calculus concepts by showing you connections between the calculus ideas and easier ideas from algebra and geometry. Then, you'll see how the calculus concepts work in concrete examples. All explanations are in plain English, not math-speak. Calculus For Dummies covers the following topics and more:Real-world examples of calculus The two big ideas of calculus: differentiation and integration Why calculus works Pre-algebra and algebra review Common functions and their graphs Limits and continuity Integration and approximating area Sequences and series Don't buy the misconception. Sure calculus is difficult - but it's manageable, doable. You made it through algebra, geometry, and trigonometry. Well, calculus just picks up where they leave off - it's simply the next step in a logical progression.
Mystery Math: A First Book of Algebra
David A. Adler - 2011
Luckily, algebra will help you solve each problem. By using simple addition, subtraction, mulitplication, and division, you'll discover that solving math mysteries isn't scary at all -- it's fun!
The Joy of Mathematics: Discovering Mathematics All Around You
Theoni Pappas - 1986
Written by the well-known mathematics teacher consultant, this volume's collection of over 200 clearly illustrated mathematical ideas, concepts, puzzles, and games shows where they turn up in the real world. You'll find out what a googol is, visit hotel infinity, read a thorny logic problem that was stumping them back in the 8th century.THE JOY OF MATHEMATICS is designed to be opened at random...it's mini essays are self-contained providing the reader with an enjoyable way to explore and experience mathematics at its best.
Short-Cut Math
Gerard W. Kelly - 1969
Short-Cut Math is a concise, remarkably clear compendium of about 150 math short-cuts — timesaving tricks that provide faster, easier ways to add, subtract, multiply, and divide.By using the simple foolproof methods in this volume, you can double or triple your calculation speed — even if you always hated math in school. Here's a sampling of the amazingly effective techniques you will learn in minutes: Adding by 10 Groups; No-Carry Addition; Subtraction Without Borrowing; Multiplying by Aliquot Parts; Test for Divisibility by Odd and Even Numbers; Simplifying Dividends and Divisors; Fastest Way to Add or Subtract Any Pair of Fractions; Multiplying and Dividing with Mixed Numbers, and more.The short-cuts in this book require no special math ability. If you can do ordinary arithmetic, you will have no trouble with these methods. There are no complicated formulas or unfamiliar jargon — no long drills or exercises. For each problem, the author provides an explanation of the method and a step-by-step solution. Then the short-cut is applied, with a proof and an explanation of why it works.Students, teachers, businesspeople, accountants, bank tellers, check-out clerks — anyone who uses numbers and wishes to increase his or her speed and arithmetical agility, can benefit from the clear, easy-to-follow techniques given here.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences
Ernest F. Haeussler Jr. - 1987
Emphasis on developing algebraic skills is extended to the exercises--including both drill problems and applications. The authors work through examples and explanations with a blend of rigor and accessibility. In addition, they have refined the flow, transitions, organization, and portioning of the content over many editions to optimize learning for readers. The table of contents covers a wide range of topics efficiently, enabling readers to gain a diverse understanding.
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Finite-Dimensional Vector Spaces
Paul R. Halmos - 1947
The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt f�r Mathematik
Q.E.D.: Beauty in Mathematical Proof
Burkard Polster - 2004
presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
The Haskell Road to Logic, Maths and Programming
Kees Doets - 2004
Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.
The Story of Mathematics
Anne Rooney - 2008
Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.
A HYPNOTIST'S JOURNEY TO ATLANTIS: EYE WITNESS ACCOUNTS OF OUR ANCIENT HISTORY
SARAH Breskman Cosme - 2020
2022: What Will Happen to Us When the Anunnaki Return to Earth In 2022?
Jean-Maximillien De La Croix de Lafayette - 2013
The MOST IMPORTANT, INFORMATIVE AND EXPLOSIVE BOOK EVER WRITTEN ABOUT THE ANUNNAKI, THEIR WORLD, THEIR RETURN TO EARTH, AND PLAN FOR HUMANITY in:• 2,034 A.D. • 2,031-2,033 A.D. • 2,029 A.D. • 2,028 A.D. • 2,027-2,026 A.D. • 2,026 A.D. • 2,025 A.D. • 2,024 A.D. • 2,022-2023 A.D. • The author, Maximillien de Lafayette, have been so fortunate as to study with the Anunnaki Ulema who are the guardians of this knowledge in Egypt, Iraq, the islands of Arwad and Cyprus. This is the first time he is making use of this depot of knowledge about the Return of the Anunnaki to Planet Earth, and we are very lucky to have access to it. The subjects introduced in this book are explosive. Most important is the fact that it reveals the potential return of the Anunnaki in 2022, and the most frightening transformation that it would bring to the earth. If this is going to happen, a huge number of the people on earth, those grossly contaminated by Grays’ DNA, will be annihilated. You know who they are – the child murderers, the rapists, those who torture, those who abuse, the vicious politicians, the slaves of money and power, etc. Yes, we all know who they are. But the Anunnaki, who have no false sentimentality at all, will not tolerate even a medium level contamination. Unless they do their best to clean themselves during the grace period of the next 9 years, those of mid level contamination will also be destroyed. Those who would manage to clean themselves to a certain degree may possibly (but without any guarantee) be able to escape the burning, smoking earth through special portals, called Ba’abs. For those of us interested in the use of esoteric codes, they are here for you to learn. Each term will teach you how to use it for your benefit, how to apply it not only to your spiritual growth, but to your business, relationships, and daily life. You will learn how to interpret the codes in many ancient languages, how to build a physical amulet/code that will protect certain aspects of your life, and how to develop your psychic and extrasensory powers by simply using these codes. You will learn how the Anunnaki, our original creators, and how God fit into all this. Religion, true and false, will be explored. Jesus, who never really died on the Cross, will be shown as a historical figure, with his wife, Mary Magdalene, with whom he escaped to ancient Marseille. Who were Adam and Eve? Who was the Serpent? How do the gods of Sumer signify to us? The book is arranged in the time-honoured tradition of questions and answers.The return of the Anunnaki is not a new idea. It has been already announced in sacred scriptures, but of course interpreted differently. Some said Jesus is an Anunnaki, and he will return as a cosmic Messiah. A new school of religious thought in Iran suggests that Mohammed will return as a celestial being. And we should not to forget the Rapture and the Gnostics as well. But all of them have their origin in the Anunnaki texts, because these texts were written thousands of years before the Old Testament, the New Testament, and the Quran. The book will explore this topic and includes:• What Is Going To Happen To Organized Religions?• How Will The Human Mind Benefit From The Anunnaki Connection?.• What Will Happen To The Teachings Of Jesus, Moses, Mohammed, And Buddha, If The Anunnaki Demolish All Religions And Our Religious Beliefs Systems?• What Will Happen To The Vast Number