Book picks similar to
Calculus III by Paul Dawkins
math
mathematics
mat
science-and-math
Strategic Mindset : A 7-Day Plan to Identify What Matters and Create a Strategy that Works (Productivity Series Book 4)
Thibaut Meurisse - 2021
The Four Noble Truths and Eightfold Path of Buddhism: Discover the Essence of Buddhism and the Path to Nibbana
Briggs Cardenas - 2014
Buddhism is an agnostic religion. It neither acknowledges the existence of a god nor denies it. It simply teaches that we must live by a moral code because it is our nature to do so, regardless of whether a god exists or not. To choose good in the hopes of reward, while avoiding evil out of fear of punishment, is not true goodness. It is sheer hypocrisy — a selfish desire to do something in return for our own benefit. To understand the Four Noble Truths and the Eightfold Path, we first have to understand the word “dukkha.” This is often mistranslated into English as “suffering,” giving people the idea that Buddhism is a pessimistic religion. Nothing can possibly be further from the truth. While dukkha can certainly be understood to mean “suffering,” it would be more accurate to translate this word as “anxiety,” “stress,” or “dissatisfaction.” This book endeavors to explain the Buddha’s perspective on dukkha, and how one can live in spite of it, even striving to move beyond it. If you’re ready to learn more about dukkha and the path to liberation, let’s get started! Here Is A Preview Of What You'll Learn...
About Buddhist Diversity
Understanding Dukkha
The Four Noble Truths
The Eightfold Path
Panna – Wisdom
Śila – Ethical Conduct
Samādhi – Concentration
Nibbāna – Blown Out
Much, much more!
Download your copy today! Tags: eight-fold path, nirvana, the four noble truths and the eightfold path, four noble truths and eightfold path, buddhism, buddhist, theraveda buddhism, Eightfold Path, four noble truths, nibbana, eightfold path of buddhism, the eightfold path, noble eightfold path, eight fold path
1001 Most Useful Spanish Words
Seymour Resnick - 1996
Included are definitions of common Spanish words arranged by such categories as foods, numbers, days of the week, months, colors, the seasons, and family. The heart of the book is a dictionary, from a to zapato, in which each word is used in a Spanish sentence (with English translation) demonstrating its proper use. This useful learning and teaching tool was compiled by Seymour Resnick, a noted language teacher. It belongs at the fingertips of anyone studying the Spanish language.
Crystal Grids Power: Harness The Power of Crystals and Sacred Geometry for Manifesting Abundance, Healing and Protection
Ethan Lazzerini - 2017
In this comprehensive and practical guide, you will learn how to make and activate Crystal Grids for yourself, others and your home. Explore the fascinating history and symbolism behind Crystal Grids. Learn how and why Crystal Grids work. Ethan Lazzerini uses over 20 years experience with crystals to formulate 34 intention based Crystal Grids for every purpose. No more secrets, this No.1 Amazon Bestselling book will demystify the world of Crystal Grids. Learn exactly why each different crystal is used and the reason every geometric shape was chosen for each grid. Crystal Grids Power is filled with tips and techniques to supercharge your grids. Access simple to advanced Crystal Grids and learn how to create your own. Includes Powerful Crystal Grids for: Abundance & Prosperity, Psychic Protection, Personal & Distant Healing, Success, Relationships, Increased Energy, Motivation, Angels, Confidence, Better Sleep, Karma Releasing, Life Purpose, Stress Relief, Earth Healing, Overcoming Obstacles, Aura Clearing, Peace & Harmony, Home Protection, New Beginnings and many more... Contains 34 Crystal Grids for all areas of your life Clearly illustrated with diagrams and step-by-step instructions The meaning of Sacred Geometry shapes and symbols explained Learn three different ways to activate your Crystal Grids Helpful substitute crystals are given for every grid Includes FREE Printable Crystal Grid Templates to download Crystal Grids Power is an indispensable guide to the magical world of Crystal Grids. This enlightening book contains EVERYTHING you need to know about Crystal Grids and how to use them. Take a look inside, download a sample or buy your copy today!
The Gunpowder Plot: History In An Hour
Sinead Fitzgibbon - 2012
Read a succinct history of the Gunpowder Plot in just one hour.‘Remember, remember, the fifth of November’. The gunpowder plot is a famed tale of treachery that continues to fascinate and capture the imagination four hundred years on.The Gunpowder Plot in an Hour reveals the elaborate background to the infamous plot to blow up the Houses of Parliament and James I, the ultimate act of treason. This compelling and engaging account of one of the most famous historical events in English history follows the Catholic protagonists hatching their plan through to their inevitable, gruesome deaths.Learn who the Catholic traitors were, what drove them to such desperate measures, and how the plot was discovered. The Gunpowder Plot in an Hour gives a concise overview of this enduring event and is a must for all history lovers.Love your history? Find out about the world with History in an Hour…
Computer Science Illuminated
Nell B. Dale - 2002
Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.
Burn Math Class: And Reinvent Mathematics for Yourself
Jason Wilkes - 2016
In Burn Math Class, Jason Wilkes takes the traditional approach to how we learn math -- with its unwelcoming textbooks, unexplained rules, and authoritarian assertions-and sets it on fire. Focusing on how mathematics is created rather than on mathematical facts, Wilkes teaches the subject in a way that requires no memorization and no prior knowledge beyond addition and multiplication. From these simple foundations, Burn Math Class shows how mathematics can be (re)invented from scratch without preexisting textbooks and courses. We can discover math on our own through experimentation and failure, without appealing to any outside authority. When math is created free from arcane notations and pretentious jargon that hide the simplicity of mathematical concepts, it can be understood organically -- and it becomes fun! Following this unconventional approach, Burn Math Class leads the reader from the basics of elementary arithmetic to various "advanced" topics, such as time-dilation in special relativity, Taylor series, and calculus in infinite-dimensional spaces. Along the way, Wilkes argues that orthodox mathematics education has been teaching the subject backward: calculus belongs before many of its so-called prerequisites, and those prerequisites cannot be fully understood without calculus. Like the smartest, craziest teacher you've ever had, Wilkes guides you on an adventure in mathematical creation that will radically change the way you think about math. Revealing the beauty and simplicity of this timeless subject, Burn Math Class turns everything that seems difficult about mathematics upside down and sideways until you understand just how easy math can be.
The Pea and the Sun: A Mathematical Paradox
Leonard M. Wapner - 2005
Would you believe that these five pieces can be reassembled in such a fashion so as to create two apples equal in shape and size to the original? Would you believe that you could make something as large as the sun by breaking a pea into a finite number of pieces and putting it back together again? Neither did Leonard Wapner, author of The Pea and the Sun, when he was first introduced to the Banach-Tarski paradox, which asserts exactly such a notion. Written in an engaging style, The Pea and the Sun catalogues the people, events, and mathematics that contributed to the discovery of Banach and Tarski's magical paradox. Wapner makes one of the most interesting problems of advanced mathematics accessible to the non-mathematician.
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
A Textbook Of Discrete Mathematics
Swapan Kumar Sarkar
Just Six Numbers: The Deep Forces That Shape the Universe
Martin J. Rees - 1999
There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Pure Mathematics: A First Course
J.K. Backhouse - 1974
This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Is God a Mathematician?
Mario Livio - 2009
Is God a Mathematician? investigates why mathematics is as powerful as it is. From ancient times to the present, scientists and philosophers have marveled at how such a seemingly abstract discipline could so perfectly explain the natural world. More than that—mathematics has often made predictions, for example, about subatomic particles or cosmic phenomena that were unknown at the time, but later were proven to be true. Is mathematics ultimately invented or discovered? If, as Einstein insisted, mathematics is “a product of human thought that is independent of experience,” how can it so accurately describe and even predict the world around us? Physicist and author Mario Livio brilliantly explores mathematical ideas from Pythagoras to the present day as he shows us how intriguing questions and ingenious answers have led to ever deeper insights into our world. This fascinating book will interest anyone curious about the human mind, the scientific world, and the relationship between them.