Book picks similar to
Deep Beauty: Understanding the Quantum World Through Mathematical Innovation by Hans Halvorson
physics
quantum
science
mathematics
Chance and Chaos
David Ruelle - 1991
How do scientists look at chance, or randomness, and chaos in physical systems? In answering this question for a general audience, Ruelle writes in the best French tradition: he has produced an authoritative and elegant book--a model of clarity, succinctness, and a humor bordering at times on the sardonic.
Mathematics and the Imagination
Edward Kasner - 1940
But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.
An Introduction To Quantum Field Theory
Michael E. Peskin - 1994
The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Solid State Physics: Structure and Properties of Materials
M.A. Wahab - 2005
The First seven chapters deal with structure related aspects such as lattice and crystal structures, bonding, packing and diffusion of atoms followed by imperfections and lattice vibrations. Chapter eight deals mainly with experimental methods of determining structures of given materials. While the next nine chapters cover various physical properties of crystalline solids, the last chapter deals with the anisotropic properties of materials. This chapter has been added for benefit of readers to understand the crystal properties (anisotropic) in terms of some simple mathematical formulations such as tensor and matrix. New to the Second Edition: Chapter on: *Anisotropic Properties of Materials
The Logical Leap: Induction in Physics
David Harriman - 2010
Inspired by and expanding on a series of lectures presented by Leonard Peikoff, David Harriman presents a fascinating answer to the problem of induction-the epistemological question of how we can know the truth of inductive generalizations.Ayn Rand presented her revolutionary theory of concepts in her book Introduction to Objectivist Epistemology. As Dr. Peikoff subsequently explored the concept of induction, he sought out David Harriman, a physicist who had taught philosophy, for his expert knowledge of the scientific discovery process.Here, Harriman presents the result of a collaboration between scientist and philosopher. Beginning with a detailed discussion of the role of mathematics and experimentation in validating generalizations in physics-looking closely at the reasoning of scientists such as Galileo, Kepler, Newton, Lavoisier, and Maxwell-Harriman skillfully argues that the inductive method used in philosophy is in principle indistinguishable from the method used in physics.
Introduction to Linear Algebra
Gilbert Strang - 1993
Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
A Short Account of the History of Mathematics
W.W. Rouse Ball - 1900
From the early Greek influences to the Middle Ages and the Renaissance to the end of the 19th century, trace the fascinating foundation of mathematics as it developed through the ages. Aristotle, Galileo, Kepler, Newton: you know the names. Now here's what they really did, and the effect their discoveries had on our culture, all explained in a way the layperson can understand. Begin with the basis of arithmetic (Plato and the introduction of geometry), and discover why the use of Arabic numerals was critical to the development of both commerce and science. The development of calculus made space travel a reality, while the abacus prefigured the computer. The greats examined in depth include Leonardo da Vinci, a brilliant mathematician as well as artist; Pascal, who laid out the theory of probabilities; and Fermat, whose intriguing theory has only recently been solved.
How to Study for a Mathematics Degree
Lara Alcock - 2012
Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation to proof, so students are expected to interact with it in different ways. These changes need not be mysterious - mathematics education research has revealed many insights into the adjustments that are necessary - but they are not obvious and they do need explaining.This no-nonsense book translates these research-based insights into practical advice for a student audience. It covers every aspect of studying for a mathematics degree, from the most abstract intellectual challenges to the everyday business of interacting with lecturers and making good use of study time. Part 1 provides an in-depth discussion of advanced mathematical thinking, and explains how a student will need to adapt and extend their existing skills in order to develop a good understanding of undergraduate mathematics. Part 2 covers study skills as these relate to the demands of a mathematics degree. It suggests practical approaches to learning from lectures and to studying for examinations while also allowing time for a fulfilling all-round university experience.The first subject-specific guide for students, this friendly, practical text will be essential reading for anyone studying mathematics at university.
Entertaining Mathematical Puzzles
Martin Gardner - 1986
Puzzlists need only an elementary knowledge of math and a will to resist looking up the answer before trying to solve a problem.Written in a light and witty style, Entertaining Mathematical Puzzles is a mixture of old and new riddles, grouped into sections that cover a variety of mathematical topics: money, speed, plane and solid geometry, probability, topology, tricky puzzles, and more. The probability section, for example, points out that everything we do, everything that happens around us, obeys the laws of probability; geometry puzzles test our ability to think pictorially and often, in more than one dimension; while topology, among the "youngest and rowdiest branches of modern geometry," offers a glimpse into a strange dimension where properties remain unchanged, no matter how a figure is twisted, stretched, or compressed.Clear and concise comments at the beginning of each section explain the nature and importance of the math needed to solve each puzzle. A carefully explained solution follows each problem. In many cases, all that is needed to solve a puzzle is the ability to think logically and clearly, to be "on the alert for surprising, off-beat angles...that strange hidden factor that everyone else had overlooked."Fully illustrated, this engaging collection will appeal to parents and children, amateur mathematicians, scientists, and students alike, and may, as the author writes, make the reader "want to study the subject in earnest" and explains "some of the inviting paths that wind away from the problems into lusher areas of the mathematical jungle." 65 black-and-white illustrations.
An Introduction to Modern Astrophysics
Bradley W. Carroll - 1995
Designed for the junior- level astrophysics course, each topic is approached in the context of the major unresolved questions in astrophysics. The core chapters have been designed for a course in stellar structure and evolution, while the extended chapters provide additional coverage of the solar system, galactic structure, dynamics, evolution, and cosmology. * Two versions of this text are available: An Introduction to Modern Stellar Astrophysics, (Chapters 1-17), and An Introduction to Modern Astrophysics, (Chapters 1-28). * Computer programs included with the text allow students to explore the physics of stars and galaxies. * In designing a curriculum, instructors can combine core and extended chapters with the optional advanced sections so as to meet their individual goals. * Up-to-date coverage of current astrophysical discoveries are included. * This text emphasizes computational physics, including computer problems and on-line programs. * This text also includes a selection of over 500 problems. For additional information and computer codes to be used
Bayes' Rule: A Tutorial Introduction to Bayesian Analysis
James V. Stone - 2013
Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, intuitive visual representations of real-world examples are used to show how Bayes' rule is actually a form of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices who wish to gain an intuitive understanding of Bayesian analysis. As an aid to understanding, online computer code (in MatLab, Python and R) reproduces key numerical results and diagrams.Stone's book is renowned for its visually engaging style of presentation, which stems from teaching Bayes' rule to psychology students for over 10 years as a university lecturer.
Schrodinger's Rabbits: The Many Worlds of Quantum
Colin Bruce - 2004
But recent technological advances have made the question both practical and urgent. A brilliantly imaginative group of physicists at Oxford University have risen to the challenge. This is their story. At long last, there is a sensible way to think about quantum mechanics. The new view abolishes the need to believe in randomness, long-range spooky forces, or conscious observers with mysterious powers to collapse cats into a state of life or death. But the new understanding comes at a price: we must accept that we live in a multiverse wherein countless versions of reality unfold side-by-side. The philosophical and personal consequences of this are awe-inspiring.The new interpretation has allowed imaginative physicists to conceive of wonderful new technologies: measuring devices that effectively share information between worlds and computers that can borrow the power of other worlds to perform calculations. Step by step, the problems initially associated with the original many-worlds formulation have been addressed and answered so that a clear but startling new picture has emerged.Just as Copenhagen was the centre of quantum discussion a lifetime ago, so Oxford has been the epicenter of the modern debate, with such figures as Roger Penrose and Anton Zeilinger fighting for single-world views, and David Deutsch, Lev Vaidman and a host of others for many-worlds.An independent physicist living in Oxford, Bruce has had a ringside seat to the debate. In his capable hands, we understand why the initially fantastic sounding many-worlds view is not only a useful way to look at things, but logically compelling. Parallel worlds are as real as the distant galaxies detected by the Hubble Space Telescope, even though the evidence for their existence may consist only of a few photons.
A Shortcut Through Time: The Path to the Quantum Computer
George Johnson - 2003
Such a device would operate under a different set of physical laws: The laws of quantum mechanics. Johnson gently leads the curious outsider through the surprisingly simple ideas needed to understand this dream, discussing the current state of the revolution, and ultimately assessing the awesome power these machines could have to change our world.
Short-Cut Math
Gerard W. Kelly - 1969
Short-Cut Math is a concise, remarkably clear compendium of about 150 math short-cuts — timesaving tricks that provide faster, easier ways to add, subtract, multiply, and divide.By using the simple foolproof methods in this volume, you can double or triple your calculation speed — even if you always hated math in school. Here's a sampling of the amazingly effective techniques you will learn in minutes: Adding by 10 Groups; No-Carry Addition; Subtraction Without Borrowing; Multiplying by Aliquot Parts; Test for Divisibility by Odd and Even Numbers; Simplifying Dividends and Divisors; Fastest Way to Add or Subtract Any Pair of Fractions; Multiplying and Dividing with Mixed Numbers, and more.The short-cuts in this book require no special math ability. If you can do ordinary arithmetic, you will have no trouble with these methods. There are no complicated formulas or unfamiliar jargon — no long drills or exercises. For each problem, the author provides an explanation of the method and a step-by-step solution. Then the short-cut is applied, with a proof and an explanation of why it works.Students, teachers, businesspeople, accountants, bank tellers, check-out clerks — anyone who uses numbers and wishes to increase his or her speed and arithmetical agility, can benefit from the clear, easy-to-follow techniques given here.