Book picks similar to
Practical Statistics Simply Explained by Russell Langley
statistics
math
mathematics
nonfiction
Standard Deviations: Flawed Assumptions, Tortured Data, and Other Ways to Lie with Statistics
Gary Smith - 2014
In Standard Deviations, economics professor Gary Smith walks us through the various tricks and traps that people use to back up their own crackpot theories. Sometimes, the unscrupulous deliberately try to mislead us. Other times, the well-intentioned are blissfully unaware of the mischief they are committing. Today, data is so plentiful that researchers spend precious little time distinguishing between good, meaningful indicators and total rubbish. Not only do others use data to fool us, we fool ourselves.With the breakout success of Nate Silver’s The Signal and the Noise, the once humdrum subject of statistics has never been hotter. Drawing on breakthrough research in behavioral economics by luminaries like Daniel Kahneman and Dan Ariely and taking to task some of the conclusions of Freakonomics author Steven D. Levitt, Standard Deviations demystifies the science behind statistics and makes it easy to spot the fraud all around.
The Little Book of Mathematical Principles, Theories, & Things
Robert Solomon - 2008
Rare Book
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
The Measure of Reality: Quantification in Western Europe, 1250-1600
Alfred W. Crosby - 1988
More people in Western Europe thought quantitatively in the sixteenth century than in any other part of the world, enabling them to become the world's leaders. With amusing detail and historical anecdote, Alfred Crosby discusses the shift from qualitative to quantitative perception that occurred during the late Middle Ages and Renaissance. Alfred W. Crosby is the author of five books, including the award-winning Ecological Imperialism: The Biological Expansion of Europe, 900-1900 (Cambridge, 1986)
Beautiful Visualization: Looking at Data through the Eyes of Experts
Julie Steele - 2010
Think of the familiar map of the New York City subway system, or a diagram of the human brain. Successful visualizations are beautiful not only for their aesthetic design, but also for elegant layers of detail that efficiently generate insight and new understanding.This book examines the methods of two dozen visualization experts who approach their projects from a variety of perspectives -- as artists, designers, commentators, scientists, analysts, statisticians, and more. Together they demonstrate how visualization can help us make sense of the world.Explore the importance of storytelling with a simple visualization exerciseLearn how color conveys information that our brains recognize before we're fully aware of itDiscover how the books we buy and the people we associate with reveal clues to our deeper selvesRecognize a method to the madness of air travel with a visualization of civilian air trafficFind out how researchers investigate unknown phenomena, from initial sketches to published papers Contributors include:Nick Bilton, Michael E. Driscoll, Jonathan Feinberg, Danyel Fisher, Jessica Hagy, Gregor Hochmuth, Todd Holloway, Noah Iliinsky, Eddie Jabbour, Valdean Klump, Aaron Koblin, Robert Kosara, Valdis Krebs, JoAnn Kuchera-Morin et al., Andrew Odewahn, Adam Perer, Anders Persson, Maximilian Schich, Matthias Shapiro, Julie Steele, Moritz Stefaner, Jer Thorp, Fernanda Viegas, Martin Wattenberg, and Michael Young.
The Quants: How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It
Scott Patterson - 2010
They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. At the card table that night was Peter Muller, an eccentric, whip-smart whiz kid who’d studied theoretical mathematics at Princeton and now managed a fabulously successful hedge fund called PDT…when he wasn’t playing his keyboard for morning commuters on the New York subway. With him was Ken Griffin, who as an undergraduate trading convertible bonds out of his Harvard dorm room had outsmarted the Wall Street pros and made money in one of the worst bear markets of all time. Now he was the tough-as-nails head of Citadel Investment Group, one of the most powerful money machines on earth. There too were Cliff Asness, the sharp-tongued, mercurial founder of the hedge fund AQR, a man as famous for his computer-smashing rages as for his brilliance, and Boaz Weinstein, chess life-master and king of the credit default swap, who while juggling $30 billion worth of positions for Deutsche Bank found time for frequent visits to Las Vegas with the famed MIT card-counting team. On that night in 2006, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz --technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers-- had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants believed that a dizzying, indecipherable-to-mere-mortals cocktail of differential calculus, quantum physics, and advanced geometry held the key to reaping riches from the financial markets. And they helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized that night, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize – and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast. Had their years of success been dumb luck, fool’s gold, a good run that could come to an end on any given day? What if The Truth they sought -- the secret of the markets -- wasn’t knowable? Worse, what if there wasn’t any Truth? In The Quants, Scott Patterson tells the story not just of these men, but of Jim Simons, the reclusive founder of the most successful hedge fund in history; Aaron Brown, the quant who used his math skills to humiliate Wall Street’s old guard at their trademark game of Liar’s Poker, and years later found himself with a front-row seat to the rapid emergence of mortgage-backed securities; and gadflies and dissenters such as Paul Wilmott, Nassim Taleb, and Benoit Mandelbrot. With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris…and an ominous warning about Wall Street’s future.
Introduction to Computation and Programming Using Python
John V. Guttag - 2013
It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.
A Word A Day: A Romp Through Some of the Most Unusual and Intriguing Words in English
Anu Garg - 2002
Now at last here's a feast for them and other verbivores. Eat up!-Barbara WallraffSenior Editor at The Atlantic Monthly and author of Word CourtPraise for A Word a Day"AWADies will be familiar with Anu Garg's refreshing approach to words: words are fun and they have fascinating histories. The people who use them have curious stories to tell too, and this collection incorporates some of the correspondence received by the editors at the AWAD site, from advice on how to outsmart your opponent in a duel (or even a truel) to a cluster of your favorite mondegreens."-John Simpson, Chief Editor, Oxford English Dictionary"A banquet of words! Feast and be nourished!"-Richard Lederer, author of The Miracle of LanguageWritten by the founder of the wildly popular A Word A Day Web site (www.wordsmith.org), this collection of unusual, obscure, and exotic English words will delight writers, scholars, crossword puzzlers, and word buffs of every ilk. The words are grouped in intriguing categories that range from "Portmanteaux" to "Words That Make the Spell-Checker Ineffective." each entry includes a concise definition, etymology, and usage example-and many feature fascinating and hilarious commentaries by A Word A Day subscribers and the authors.
Pattern Classification
David G. Stork - 1973
Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Baseball Prospectus 2016: The Essential Guide to the 2016 Season
Sam Miller - 2016
Instead, "Baseball Prospectus 2016" contains significant improvements along with the usual key stat categories, player predictions and insider-level commentary that readers expect from Baseball Prospectus annual guide."Baseball Prospectus 2016" once again provides fantasy players and insiders alike with prescient PECOTA projections, which "Sports Illustrated" has called perhaps the game s most accurate projection model. Still, stats are just numbers if you don t see the larger context, and Baseball Prospectus brings together an elite team of analysts to provide the definitive look at all thirty teams their players, their prospects and their managers to explain away flukes, hot streaks, injury-tainted numbers and park effects.Nearly every major-league team has sought the advice of current or former Prospectus analysts, and readers of "Baseball Prospectus" 2016 will understand what all those insiders have been raving about.In a book that sports personality Ken Tremendous calls The tip of the nerd spear, the team at Baseball Prospectus is proud to bring the following improvements to the 2016 Annual:Two full years of projections PECOTA lines for 2016 and 2017Historical Peak MPH added for major-league pitchersDeserved Run Average (DRA) added for major-league pitcherscFIP added for major-league and minor-league pitchersPitcher WARP redesigned, utilizing DRA and cFIP for all pitchersRevised cFIP-driven PECOTA pitching projectionsCatcher-specific defensive stats for all catchers Double-A and aboveOutfield assists and catcher defense integrated in FRAA and WARPBallpark schematic and wall height study for every stadiumHit List, finance, and farm system ranking graphs for each teamEvery organization s key front office personnel and Baseball Prospectus alumni identified"
Probability And Statistics For Engineers And Scientists
Ronald E. Walpole - 1978
Offers extensively updated coverage, new problem sets, and chapter-ending material to enhance the book’s relevance to today’s engineers and scientists. Includes new problem sets demonstrating updated applications to engineering as well as biological, physical, and computer science. Emphasizes key ideas as well as the risks and hazards associated with practical application of the material. Includes new material on topics including: difference between discrete and continuous measurements; binary data; quartiles; importance of experimental design; “dummy” variables; rules for expectations and variances of linear functions; Poisson distribution; Weibull and lognormal distributions; central limit theorem, and data plotting. Introduces Bayesian statistics, including its applications to many fields. For those interested in learning more about probability and statistics.
Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures
Claus O. Wilke - 2019
But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options.This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization.Explore the basic concepts of color as a tool to highlight, distinguish, or represent a valueUnderstand the importance of redundant coding to ensure you provide key information in multiple waysUse the book's visualizations directory, a graphical guide to commonly used types of data visualizationsGet extensive examples of good and bad figuresLearn how to use figures in a document or report and how employ them effectively to tell a compelling story
Teaching English As A Foreign Language (Teach Yourself English As A Foreign Language S.)
David Riddell - 2001
It should provide you with the basic teaching skills, background knowledge and awareness that will enable you to enter the classroom with confidence and develop your skills. The book contains: advice on effective teaching techniques; tips on classroom management, lesson planning and using coursebooks; appraoches to teaching different kinds of lessons; tasks and review sections in each unit to help you remember what you have learnt; and lots of information about job hunting and career development.
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
John H. Miller - 2007
Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
Econometric Analysis of Cross Section and Panel Data
Jeffrey M. Wooldridge - 2001
The book makes clear that applied microeconometrics is about the estimation of marginal and treatment effects, and that parametric estimation is simply a means to this end. It also clarifies the distinction between causality and statistical association. The book focuses specifically on cross section and panel data methods. Population assumptions are stated separately from sampling assumptions, leading to simple statements as well as to important insights. The unified approach to linear and nonlinear models and to cross section and panel data enables straightforward coverage of more advanced methods. The numerous end-of-chapter problems are an important component of the book. Some problems contain important points not fully described in the text, and others cover new ideas that can be analyzed using tools presented in the current and previous chapters. Several problems require the use of the data sets located at the author's website.