Schaum's Outline of College Physics


Frederick J. Bueche - 2006
    Provides a review of introductory noncalculus-based physics for those who do not have a strong background in mathematics.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Discrete Mathematical Structures


Bernard Kolman - 1995
    It covers areas such as fundamentals, logic, counting, relations and digraphs, trees, topics in graph theory, languages and finite-state machines, and groups and coding.

The Book of Why: The New Science of Cause and Effect


Judea Pearl - 2018
    Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

Archimedes' Revenge: The Joys and Perils of Mathematics


Paul Hoffman - 1988
    An extremely clever account.--The New Yorker.

Graph Theory With Applications To Engineering And Computer Science


Narsingh Deo - 2004
    GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1

Bayes Theorem: A Visual Introduction For Beginners


Dan Morris - 2016
    Bayesian statistics is taught in most first-year statistics classes across the nation, but there is one major problem that many students (and others who are interested in the theorem) face. The theorem is not intuitive for most people, and understanding how it works can be a challenge, especially because it is often taught without visual aids. In this guide, we unpack the various components of the theorem and provide a basic overview of how it works - and with illustrations to help. Three scenarios - the flu, breathalyzer tests, and peacekeeping - are used throughout the booklet to teach how problems involving Bayes Theorem can be approached and solved. Over 60 hand-drawn visuals are included throughout to help you work through each problem as you learn by example. The illustrations are simple, hand-drawn, and in black and white. For those interested, we have also included sections typically not found in other beginner guides to Bayes Rule. These include: A short tutorial on how to understand problem scenarios and find P(B), P(A), and P(B|A). For many people, knowing how to approach scenarios and break them apart can be daunting. In this booklet, we provide a quick step-by-step reference on how to confidently understand scenarios.A few examples of how to think like a Bayesian in everyday life. Bayes Rule might seem somewhat abstract, but it can be applied to many areas of life and help you make better decisions. It is a great tool that can help you with critical thinking, problem-solving, and dealing with the gray areas of life. A concise history of Bayes Rule. Bayes Theorem has a fascinating 200+ year history, and we have summed it up for you in this booklet. From its discovery in the 1700’s to its being used to break the German’s Enigma Code during World War 2, its tale is quite phenomenal.Fascinating real-life stories on how Bayes formula is used in everyday life.From search and rescue to spam filtering and driverless cars, Bayes is used in many areas of modern day life. We have summed up 3 examples for you and provided an example of how Bayes could be used.An expanded definitions, notations, and proof section.We have included an expanded definitions and notations sections at the end of the booklet. In this section we define core terms more concretely, and also cover additional terms you might be confused about. A recommended readings section.From The Theory That Would Not Die to a few other books, there are a number of recommendations we have for further reading. Take a look! If you are a visual learner and like to learn by example, this intuitive booklet might be a good fit for you. Bayesian statistics is an incredibly fascinating topic and likely touches your life every single day. It is a very important tool that is used in data analysis throughout a wide-range of industries - so take an easy dive into the theorem for yourself with a visual approach!If you are looking for a short beginners guide packed with visual examples, this booklet is for you.

Fundamentals of Digital Image Processing


Anil K. Jain - 1988
    Includes a comprehensive chapter on stochastic models for digital image processing. Covers aspects of image representation including luminance, color, spatial and temporal properties of vision, and digitization. Explores various image processing techniques. Discusses algorithm development (software/firmware) for image transforms, enhancement, reconstruction, and image coding.

Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World


Leslie Valiant - 2013
    We nevertheless muddle through even in the absence of theories of how to act. But how do we do it?In Probably Approximately Correct, computer scientist Leslie Valiant presents a masterful synthesis of learning and evolution to show how both individually and collectively we not only survive, but prosper in a world as complex as our own. The key is “probably approximately correct” algorithms, a concept Valiant developed to explain how effective behavior can be learned. The model shows that pragmatically coping with a problem can provide a satisfactory solution in the absence of any theory of the problem. After all, finding a mate does not require a theory of mating. Valiant’s theory reveals the shared computational nature of evolution and learning, and sheds light on perennial questions such as nature versus nurture and the limits of artificial intelligence.Offering a powerful and elegant model that encompasses life’s complexity, Probably Approximately Correct has profound implications for how we think about behavior, cognition, biological evolution, and the possibilities and limits of human and machine intelligence.

Do Dice Play God?: The Mathematics of Uncertainty


Ian Stewart - 2019
    We want to be able to figure out who will win an election, if the stock market will crash, or if a suspect definitely committed a crime. But the odds are not in our favor. Life is full of uncertainty --- indeed, scientific advances indicate that the universe might be fundamentally inexact --- and humans are terrible at guessing. When asked to predict the outcome of a chance event, we are almost always wrong.Thankfully, there is hope. As award-winning mathematician Ian Stewart reveals, over the course of history, mathematics has given us some of the tools we need to better manage the uncertainty that pervades our lives. From forecasting, to medical research, to figuring out how to win Let's Make a Deal, Do Dice Play God? is a surprising and satisfying tour of what we can know, and what we never will.

How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."