The Stardust Revolution: The New Story of Our Origin in the Stars
Jacob Berkowitz - 2012
The sixteenth and seventeenth centuries witnessed the Copernican Revolution, which bodychecked the Earth as the pivot point of creation and joined us with the rest of the cosmos as one planet among many orbiting the Sun. Three centuries later came the second great scientific revolution: the Darwinian Revolution. It removed us from a distinct, divine biological status to place us wholly in the ebb and flow of all terrestrial life. This book describes how we’re in the midst of a third great scientific revolution, five centuries in the making: the Stardust Revolution. It is the merging of the once-disparate realms of astronomy and evolutionary biology, and of the Copernican and Darwinian Revolutions, placing life in a cosmic context. This book takes readers on a grand journey that begins on the summit of California’s Mount Wilson, where astronomers first realized that the universe is both expanding and evolving, to a radio telescope used to identify how organic molecules—the building blocks of life—are made by stars. It’s an epic story told through a scientific cast that includes some of the twentieth century’s greatest minds—including Nobel laureate Charles Townes, who discovered cosmic water—as well as the most ambitious scientific explorers of the twenty-first century, those racing to find another living planet. Today, an entirely new breed of scientists—astrobiologists and astrochemists—are taking the study of life into the space age. Astrobiologists study the origins, evolution, and distribution of life, not just on Earth, but in the universe. Stardust science is filling in the missing links in our evolutionary story, ones that extend our family tree back to the stars.
Visual Intelligence: How We Create What We See
Donald D. Hoffman - 1998
Hoffman aptly demonstrates the mysterious constructive powers of our eye-brain machines using lots of simple drawings and diagrams to illustrate basic rules of the visual road. Many of the examples are familiar optical illusions--perspective-confounding cubes, a few lines that add up to a more complex shape than seems right. Hoffman also takes a cue from Oliver Sacks, employing anecdotes about people with various specific visual malfunctions to both further his mechanical explanation of visual intelligence and drive home how important this little-understood aspect of cognition can be in our lives. An especially intriguing example involves a boy, blind from birth, who is surgically given the power to see. At first, he is completely unable to visually distinguish objects familiar by touch, such as the cat and the dog. Other poignant examples show clearly how image construction is normally linked to our emotional well-being and sense of place. Visual Intelligence is a fascinating, confounding look (as it were) at an aspect of human physiology and psychology that very few of us think about much at all. --Therese Littleton
The Fingerprint of God: Recent Scientific Discoveries Reveal the Unmistakable Identity of the Creator
Hugh Ross - 1989
Hugh Ross, astromomer, tells the fascinating story of how the latest research into origins not only has sealed the case for divine creation, but has revealed the identity of the Creator Himself.
The Best American Science Writing 2000
James Gleick - 2000
The first volume in this annual series of the best writing by Americans, meticulously selected by bestselling author James Gleick, one of the foremost chronicles of scientific social history, debuts with a stellar collection of writers and thinkers. Many of these cutting-edge essays offer glimpses of new realms of discovery and thought, exploring territory that is unfamiliar to most of us, or finding the unexpected in the midst of the familiar. Nobel Laureate physicist Steven Weinberg challenges the idea of whether the universe has a designer; Pulitzer Prize winner Natalie Angier reassesses caveman (and-woman) couture; bestselling author and Darwinian theorist Stephen Jay Gould makes a claim for the man whose ideas Darwin discredited; Timothy Ferris proposes a realistic alternative to wrap-speed interseller travel; neurologist and bestselling author Oliver Sacks reminisces about his first loves-chemistry and math. This diverse, stimulating and accessible collection is required reading for anyone who wants to travel to the frontier of knowledge.
The Particle Zoo: The Search for the Fundamental Nature of Reality
Gavin Hesketh - 2016
Concisely and with a rare clarity, he demystifies how we are uncovering the inner workings of the universe and heading towards the next scientific revolution.Why are atoms so small? How did the Higgs boson save the universe? And is there a Theory of Everything? The Particle Zoo answers these and many other profound questions, and explains the big ideas of Quantum Physics, String Theory, The Big Bang and Dark Matter... and, ultimately, what we know about the true, fundamental nature of reality.
The Undivided Universe: An Ontological Interpretation of Quantum Theory
David Bohm - 1993
They develop an interpretation of quantum mechanics which gives a clear, intuitive understanding of its meaning and in which there is a coherent notion of the reality of the universe without assuming a fundamental role for the human observer. With the aid of new concepts such as active information together with non-locality, they provide a comprehensive account of all the basic features of quantum mechanics, including the relativistic domain and quantum field theory. It is shown that, with the new approach, paradoxical or unsatisfactory features associated with the standard approaches, such as the wave-particle duality and the collapse of the wave function, do not arise. Finally, the authors make new suggestions and indicate some areas in which one may expect quantum theory to break down in a way that will allow for a test. The Undivided Universe is an important book especially because it provides a different overall world view which is neither mechanistic nor reductionist. This view will ultimately have radical implications not only in physics but also in our general approach to all areas of life.
The Void
Frank Close - 2007
Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the understanding that the vacuum is filled with fields; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. It compares the ways that substances change from gas to liquid and solid with the way that the vacuum of our universe has changed as the temperature dropped following the Big Bang. It covers modern ideas that there may be more dimensions to the void than those that we currently are aware of and even that our universe is but one in a multiverse. The Void takes us inside a field of science that may ultimately provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin?
Introduction to Special Relativity
Robert Resnick - 1968
Professor Resnick presents a fundamental and unified development of the subject with unusually clear discussions of the aspects that usually trouble beginners. He includes, for example, a section on the common sense of relativity. His presentation is lively and interspersed with historical, philosophical and special topics (such as the twin paradox) that will arouse and hold the reader's interest. You'll find many unique features that help you grasp the material, such as worked-out examples, summary tables, thought questions and a wealth of excellent problems. The emphasis throughout the book is physical. The experimental background, experimental confirmation of predictions, and the physical interpretation of principles are stressed. The book treats relativistic kinematics, relativistic dynamics, and relativity and electromagnetism and contains special appendices on the geometric representation of space-time and on general relativity. Its organization permits an instructor to vary the length and depth of his treatment and to use the book either with or following classical physics. These features make it an ideal companion for introductory course
Pavlov's Dog: Groundbreaking Experiments in Psychology
Adam Hart-Davis - 2015
Whether you’re interested in memory or prejudice, learning or schizophrenia, you’ll find something to interest you in this essential guide to the science of the mind.
Biography of a Germ
Arno Karlen - 2000
In existence for some hundred million years, it was discovered only recently. Exploring its evolution, its daily existence, and its journey from ticks to mice to deer to humans, Karlen lucidly examines the life and world of this recently prominent germ. He also describes how it attacks the human body, and how by changing the environment, people are now much more likely to come into contact with it. Charming and thorough and smart, this book is a wonderfully written biography of your not so typical biographical subject.
The 4% Universe: Dark Matter, Dark Energy, and the Race to Discover the Rest of Reality
Richard Panek - 2010
In the past few years, a handful of scientists have been in a race to explain a disturbing aspect of our universe: only 4 percent of it consists of the matter that makes up you, me, our books, and every planet, star, and galaxy. The rest—96 percent of the universe—is completely unknown. Richard Panek tells the dramatic story of how scientists reached this conclusion, and what they’re doing to find this "dark" matter and an even more bizarre substance called dark energy. Based on in-depth, on-site reporting and hundreds of interviews—with everyone from Berkeley’s feisty Saul Perlmutter and Johns Hopkins’s meticulous Adam Riess to the quietly revolutionary Vera Rubin—the book offers an intimate portrait of the bitter rivalries and fruitful collaborations, the eureka moments and blind alleys, that have fueled their search, redefined science, and reinvented the universe.
The Georgian Star: How William and Caroline Herschel Revolutionized Our Understanding of the Cosmos
Michael D. Lemonick - 2008
Though he is still best known for this finding, his partnership with his sister Caroline yielded groundbreaking work, including techniques that remain in use today. The duo pioneered comprehensive surveys of the night sky, carefully categorizing every visible object in the void. Caroline wrote an influential catalogue of nebulae, and William discovered infrared radiation. Celebrated science writer Michael Lemonick guides readers through the depths of the solar system and into his protagonists' private lives: William developed bizarre theories about inhabitants of the sun; he procured an unheard-of salary for Caroline even while haggling with King George III over the funding for an enormous, forty-foot telescope; the siblings feuded over William's marriage and eventually reconciled. Erudite and accessible, The Georgian Star is a lively portrait of the pair who invented modern astronomy.
An Imaginary Tale: The Story of the Square Root of Minus One
Paul J. Nahin - 1998
Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts, mathematical discussions, and the application of complex numbers and functions to important problems.
For the Love of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics
Walter Lewin - 2011
“I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.