The Art of R Programming: A Tour of Statistical Software Design


Norman Matloff - 2011
    No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.

Data Mining: Practical Machine Learning Tools and Techniques


Ian H. Witten - 1999
    This highly anticipated fourth edition of the most ...Download Link : readmeaway.com/download?i=0128042915            0128042915 Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF by Ian H. WittenRead Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems) PDF from Morgan Kaufmann,Ian H. WittenDownload Ian H. Witten's PDF E-book Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann Series in Data Management Systems)

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Essential Calculus


James Stewart - 2006
    In writing the book James Stewart asked himself: What is essential for a three-semester calculus course for scientists and engineers? Stewart's ESSENTIAL CALCULUS offers a concise approach to teaching calculus that focuses on major concepts and supports those concepts with precise definitions, patient explanations, and carefully graded problems. Essential Calculus is only 850 pages-two-thirds the size of Stewart's other calculus texts (CALCULUS, Fifth Edition and CALCULUS, EARLY TRANSCENDENTALS, Fifth Edition)-and yet it contains almost all of the same topics. The author achieved this relative brevity mainly by condensing the exposition and by putting some of the features on the website, www.StewartCalculus.com. Despite the reduced size of the book, there is still a modern flavor: Conceptual understanding and technology are not neglected, though they are not as prominent as in Stewart's other books. ESSENTIAL CALCULUS has been written with the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.

Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)


Michael H. Kutner - 2003
    Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.

Statistics Without Tears: An Introduction for Non-Mathematicians


Derek Rowntree - 1981
    With it you can prime yourself with the key concepts of statistics before getting involved in the associated calculations. Using words and diagrams instead of figures, formulae and equations, Derek Rowntree makes statistics accessible to those who are non-mathematicians. And just to get you into the spirit of things. Rowntree has included questions in his argument; answer them as you go and you will be able to tell how far you have mastered the subject.

Discrete-Time Signal Processing (Prentice-Hall Signal Processing Series)


Alan V. Oppenheim - 1989
    Revised from the 1989 edition not so much with new information, which has not changed much at the introductory level, bu

Human Anatomy


Frederic H. Martini - 1994
    Time-saving study tools help readers arrive at a complete understanding of human anatomy. KEY TOPICS: An Introduction to Anatomy, The Cell, Tissues and Early Embryology, The Integumentary System, The Skeletal System: Osseous Tissue and Skeletal Structure, The Skeletal System: Axial Division, The Skeletal System: Appendicular Division, The Skeletal System: Articulations, The Muscular System: Skeletal Muscle Tissue and Muscle Organization, The Muscular System: Axial Musculature, The Muscular System: Appendicular Musculature, Surface Anatomy and Cross-Sectional Anatomy, The Nervous System: Neural Tissue, The Nervous System: The Spinal Cord and Spinal Nerves, The Nervous System: The Brain and Cranial Nerves, The Nervous System: Pathways And Higher-Order Functions, The Nervous System:  Autonomic Division, The Nervous System: General and Special Senses, The Endocrine System, The Cardiovascular System: Blood, The Cardiovascular System: The Heart, The Cardiovascular System: Vessels and Circulation, The Lymphoid System, The Respiratory System, The Digestive System, The Urinary System, The Reproductive System, The Reproductive System: Embryology and HumanDevelopment. MARKET: For all readers interested in human anatomy.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

The Analysis of Biological Data


Michael C. Whitlock - 2008
    To reach this unique audience, Whitlock and Schluter motivate learning with interesting biological and medical examples; they emphasize intuitive understanding; and they focus on real data. The book covers basic topics in introductory statistics, including graphs, confidence intervals, hypothesis testing, comparison of means, regression, and designing experiments. It also introduces the principles behind such modern topics as likelihood, linear models, meta-analysis and computer-intensive methods. Instructors and students consistently praise the book's clear and engaging writing, strong visualization techniques, and its variety of fascinating and relevant biological examples.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Data Smart: Using Data Science to Transform Information into Insight


John W. Foreman - 2013
    Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Barron's GRE


Sharon Weiner Green - 2000
    Tests are similar to recent actual GREs in length, question types, and degree of difficulty. The manual also reviews all GRE test topics: antonym, analogy, and sentence-completion questions, reading comprehension, analytical writing, quantitative comparison questions, data interpretation, and math.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Stat-Spotting: A Field Guide to Identifying Dubious Data


Joel Best - 2008
    But all too often, even the most respected publications present numbers that are miscalculated, misinterpreted, hyped, or simply misleading. Following on the heels of his highly acclaimed Damned Lies and Statistics and More Damned Lies and Statistics, Joel Best now offers this practical field guide to help everyone identify questionable statistics. Entertaining, informative, and concise, Stat-Spotting is essential reading for people who want to be more savvy and critical consumers of news and information.Stat-Spotting features:* Pertinent examples from today's news, including the number of deaths reported in Iraq, the threat of secondhand smoke, the increase in the number of overweight Americans, and many more* A commonsense approach that doesn't require advanced math or statistics