Book picks similar to
Applied Linear Statistical Models by Neter
statistics
mathematics
analytics
stats
One Day University Presents: Positive Psychology: The Science of Happiness
One Day University - 2010
He is also the Head Teaching Fellow for the most popular course at Harvard, “Positive Psychology,” which is taken by more than 1,000 students per semester and led by Professor Tal Ben-Shahar. Shawn received his B.A. in English from Harvard and a Master’s from Harvard Divinity School in Christian and Buddhist Ethics. Part of his interest in positive psychology stems from a troubling fact: studies have shown that many of Harvard’s undergraduates suffer from depression at some point in their college careers. One Day University is a unique educational experience that brings intellectuals together to learn from top rated professors at Yale, Harvard, Stanford, Columbia and other prestigious universities. Chosen for their excellent teaching abilities as rated by their students, these great thinkers represent a wide variety of academic disciplines and share their knowledge in 60 minute, highly entertaining lectures. Offering the ability to learn the highlights of academic thought in world affairs, politics, history, science, art, and more; One Day University is a way to truly enjoy the thrill of learning without the pressures of tests and the high price tag of college tuition. Once reserved only for students who could attend the lectures in New York and other major cities, One Day University courses are now available to everyone from the comfort of their own homes in Kindle format.
C Programming: Language: A Step by Step Beginner's Guide to Learn C Programming in 7 Days
Darrel L. Graham - 2016
It is a great book, not just for beginning programmers, but also for computer users who would want to have an idea what is happening behind the scenes as they work with various computer programs. In this book, you are going to learn what the C programming language entails, how to write conditions, expressions, statements and even commands, for the language to perform its functions efficiently. You will learn too how to organize relevant expressions so that after compilation and execution, the computer returns useful results and not error messages. Additionally, this book details the data types that you need for the C language and how to present it as well. Simply put, this is a book for programmers, learners taking other computer courses, and other computer users who would like to be versed with the workings of the most popular computer language, C. In this book You'll learn: What Is The C Language? Setting Up Your Local Environment The C Structure and Data Type C Constants and Literals C Storage Classes Making Decisions In C The Role Of Loops In C Programming Functions in C Programming Structures and Union in C Bit Fields and Typedef Within C. C Header Files and Type Casting Benefits Of Using The C Language ...and much more!! Download your copy today! click the BUY button and download it right now!
Fundamentals of Physics, Chapters 1 - 21, Enhanced Problems Version
David Halliday - 2000
This newest edition expands on the strengths of earlier versions, helping students bridge the gap between concepts and reasoning. Students are shown, rather than told about, how physics works and are given the opportunity to apply concepts to real-world problems. Each chapter and concept has been scrutinized to ensure clarity, currency, and accuracy while checkpoints, problem solving tactics, and sample problems help students make sense of new concepts. As always, Fundamentals of Physics covers every aspect of basic physics, from force and motion to relativity and will prepare today's students to be tomorrow's scientists.
Introduction to Computation and Programming Using Python
John V. Guttag - 2013
It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.
Introduction to Information Retrieval
Christopher D. Manning - 2008
Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.
The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century
David Salsburg - 2001
At a summer tea party in Cambridge, England, a guest states that tea poured into milk tastes different from milk poured into tea. Her notion is shouted down by the scientific minds of the group. But one man, Ronald Fisher, proposes to scientifically test the hypothesis. There is no better person to conduct such an experiment, for Fisher is a pioneer in the field of statistics.The Lady Tasting Tea spotlights not only Fisher's theories but also the revolutionary ideas of dozens of men and women which affect our modern everyday lives. Writing with verve and wit, David Salsburg traces breakthroughs ranging from the rise and fall of Karl Pearson's theories to the methods of quality control that rebuilt postwar Japan's economy, including a pivotal early study on the capacity of a small beer cask at the Guinness brewing factory. Brimming with intriguing tidbits and colorful characters, The Lady Tasting Tea salutes the spirit of those who dared to look at the world in a new way.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan
Richard McElreath - 2015
Reflecting the need for even minor programming in today's model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling.Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author's website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
Modern Database Management
Jeffrey A. Hoffer - 1994
Intended for professional development programs in introductory database management.
Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)
Jiawei Han - 2000
Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Innumeracy: Mathematical Illiteracy and Its Consequences
John Allen Paulos - 1988
Dozens of examples in innumeracy show us how it affects not only personal economics and travel plans, but explains mis-chosen mates, inappropriate drug-testing, and the allure of pseudo-science.
The Craft of Research
Wayne C. Booth - 1995
Seasoned researchers and educators Gregory G. Colomb and Joseph M. Williams present an updated third edition of their classic handbook, whose first and second editions were written in collaboration with the late Wayne C. Booth. The Craft of Research explains how to build an argument that motivates readers to accept a claim; how to anticipate the reservations of readers and to respond to them appropriately; and how to create introductions and conclusions that answer that most demanding question, “So what?” The third edition includes an expanded discussion of the essential early stages of a research task: planning and drafting a paper. The authors have revised and fully updated their section on electronic research, emphasizing the need to distinguish between trustworthy sources (such as those found in libraries) and less reliable sources found with a quick Web search. A chapter on warrants has also been thoroughly reviewed to make this difficult subject easier for researchers Throughout, the authors have preserved the amiable tone, the reliable voice, and the sense of directness that have made this book indispensable for anyone undertaking a research project.
America: A Concise History, Volume 2: Since 1865
James A. Henretta - 1986
History survey because of the uncommon value it offers instructors and students alike. The authors' own abridgement preserves the analytical power of the parent text, America's History, while offering all the flexibility of a brief book. The latest scholarship, hallmark global perspective, and handy format combine with the best full-color art and map program of any brief text to create a book that students read and enjoy.
Statistics in a Nutshell: A Desktop Quick Reference
Sarah Boslaugh - 2008
This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrated by graphics, formulas, and plenty of solved examples. Before you know it, you'll learn to apply statistical reasoning and statistical techniques, from basic concepts of probability and hypothesis testing to multivariate analysis. Organized into four distinct sections, Statistics in a Nutshell offers you:Introductory material: Different ways to think about statistics Basic concepts of measurement and probability theoryData management for statistical analysis Research design and experimental design How to critique statistics presented by others Basic inferential statistics: Basic concepts of inferential statistics The concept of correlation, when it is and is not an appropriate measure of association Dichotomous and categorical data The distinction between parametric and nonparametric statistics Advanced inferential techniques: The General Linear Model Analysis of Variance (ANOVA) and MANOVA Multiple linear regression Specialized techniques: Business and quality improvement statistics Medical and public health statistics Educational and psychological statistics Unlike many introductory books on the subject, Statistics in a Nutshell doesn't omit important material in an effort to dumb it down. And this book is far more practical than most college texts, which tend to over-emphasize calculation without teaching you when and how to apply different statistical tests. With Statistics in a Nutshell, you learn how to perform most common statistical analyses, and understand statistical techniques presented in research articles. If you need to know how to use a wide range of statistical techniques without getting in over your head, this is the book you want.