Book picks similar to
Excel 2016 Power Programming with VBA (Mr. Spreadsheet's Bookshelf) by Michael Alexander
reference
excel
shelved
non-fiction
Building Microservices: Designing Fine-Grained Systems
Sam Newman - 2014
But developing these systems brings its own set of headaches. With lots of examples and practical advice, this book takes a holistic view of the topics that system architects and administrators must consider when building, managing, and evolving microservice architectures.Microservice technologies are moving quickly. Author Sam Newman provides you with a firm grounding in the concepts while diving into current solutions for modeling, integrating, testing, deploying, and monitoring your own autonomous services. You'll follow a fictional company throughout the book to learn how building a microservice architecture affects a single domain.Discover how microservices allow you to align your system design with your organization's goalsLearn options for integrating a service with the rest of your systemTake an incremental approach when splitting monolithic codebasesDeploy individual microservices through continuous integrationExamine the complexities of testing and monitoring distributed servicesManage security with user-to-service and service-to-service modelsUnderstand the challenges of scaling microservice architectures
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Go in Practice
Matt Butcher - 2015
Following a cookbook-style Problem/Solution/Discussion format, this practical handbook builds on the foundational concepts of the Go language and introduces specific strategies you can use in your day-to-day applications. You'll learn techniques for building web services, using Go in the cloud, testing and debugging, routing, network applications, and much more.
Game Engine Architecture
Jason Gregory - 2009
The concepts and techniques described are the actual ones used by real game studios like Electronic Arts and Naughty Dog. The examples are often grounded in specific technologies, but the discussion extends way beyond any particular engine or API. The references and citations make it a great jumping off point for those who wish to dig deeper into any particular aspect of the game development process.Intended as the text for a college level series in game programming, this book can also be used by amateur software engineers, hobbyists, self-taught game programmers, and existing members of the game industry. Junior game engineers can use it to solidify their understanding of game technology and engine architecture. Even senior engineers who specialize in one particular field of game development can benefit from the bigger picture presented in these pages.
Computer Systems: A Programmer's Perspective
Randal E. Bryant - 2002
Often, computer science and computer engineering curricula don't provide students with a concentrated and consistent introduction to the fundamental concepts that underlie all computer systems. Traditional computer organization and logic design courses cover some of this material, but they focus largely on hardware design. They provide students with little or no understanding of how important software components operate, how application programs use systems, or how system attributes affect the performance and correctness of application programs. - A more complete view of systems - Takes a broader view of systems than traditional computer organization books, covering aspects of computer design, operating systems, compilers, and networking, provides students with the understanding of how programs run on real systems. - Systems presented from a programmers perspective - Material is presented in such a way that it has clear benefit to application programmers, students learn how to use this knowledge to improve program performance and reliability. They also become more effective in program debugging, because t
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
Cameron Davidson-Pilon - 2014
However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power.
Bayesian Methods for Hackers
illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Compilers: Principles, Techniques, and Tools
Alfred V. Aho - 1986
The authors present updated coverage of compilers based on research and techniques that have been developed in the field over the past few years. The book provides a thorough introduction to compiler design and covers topics such as context-free grammars, fine state machines, and syntax-directed translation.
Exploring CQRS and Event Sourcing
Dominic Betts - 2012
It presents a learning journey, not definitive guidance. It describes the experiences of a development team with no prior CQRS proficiency in building, deploying (to Windows Azure), and maintaining a sample real-world, complex, enterprise system to showcase various CQRS and ES concepts, challenges, and techniques.The development team did not work in isolation; we actively sought input from industry experts and from a wide group of advisors to ensure that the guidance is both detailed and practical.The CQRS pattern and event sourcing are not mere simplistic solutions to the problems associated with large-scale, distributed systems. By providing you with both a working application and written guidance, we expect you’ll be well prepared to embark on your own CQRS journey.
The Twelve-Factor App
Adam Wiggins - 2012
The twelve-factor app is a methodology for building software-as-a-service apps that: - Use declarative formats for setup automation, to minimize time and cost for new developers joining the project; - Have a clean contract with the underlying operating system, offering maximum portability between execution environments; - Are suitable for deployment on modern cloud platforms, obviating the need for servers and systems administration; - Minimize divergence between development and production, enabling continuous deployment for maximum agility; - And can scale up without significant changes to tooling, architecture, or development practices.The twelve-factor methodology can be applied to apps written in any programming language, and which use any combination of backing services (database, queue, memory cache, etc).
Think Like a Programmer: An Introduction to Creative Problem Solving
V. Anton Spraul - 2012
In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
PYTHON: PROGRAMMING: A BEGINNER’S GUIDE TO LEARN PYTHON IN 7 DAYS
Ramsey Hamilton - 2016
Python is a beautiful computer language. It is simple, and it is intuitive. Python is used by a sorts of people – data scientists use it for much of their number crunching and analytics; security testers use it for testing out security and IT attacks; it is used to develop high-quality web applications and many of the large applications that you use on the internet are also written in Python, including YouTube, DropBox, and Instagram. Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble.Are you interested in learning Python? Then settle in and learn the basics in just 7 days - enough for you to be comfortable in moving on to the next level without any trouble. In this book you'll learn: Setting Up Your Environment Let’s Get Programming Variables and Programs in Files Loops, Loops and More Loops Functions Dictionaries, Lists, and Tuples The “for” Loop Classes Modules File Input/Output Error Handling and much more! Now it's time for you to start your journey into Python programming! Click on the Buy Now button above and get started today!
Professional Android 2 Application Development
Reto Meier - 2010
This update to the bestselling first edition dives in to cover the exciting new features of the latest release of the Android mobile platform.Providing in-depth coverage of how to build mobile applications using the next major release of the Android SDK, this invaluable resource takes a hands-on approach to discussing Android with a series of projects, each of which introduces a new feature and highlights techniques and best practices to get the most out of Android.The Android SDK is a powerful, flexible, open source platform for mobile devices Shares helpful techniques and best practices to maximize the capabilities of Android Explains the possibilities of Android through the use of a series of detailed projects Demonstrates how to create real-world mobile applications for Android phones Includes coverage of the latest version of Android Providing concise and compelling examples, Professional Android Application Development is an updated guide aimed at helping you create mobile applications for mobile devices running the latest version of Android.
Ejb 3 in Action
Debu Panda - 2007
This book builds on the contributions and strengths of seminal technologies like Spring, Hibernate, and TopLink.EJB 3 is the most important innovation introduced in Java EE 5.0. EJB 3 simplifies enterprise development, abandoning the complex EJB 2.x model in favor of a lightweight POJO framework. The new API represents a fresh perspective on EJB without sacrificing the mission of enabling business application developers to create robust, scalable, standards-based solutions.EJB 3 in Action is a fast-paced tutorial, geared toward helping you learn EJB 3 and the Java Persistence API quickly and easily. For newcomers to EJB, this book provides a solid foundation in EJB. For the developer moving to EJB 3 from EJB 2, this book addresses the changes both in the EJB API and in the way the developer should approach EJB and persistence.