Genius Makers: The Mavericks Who Brought AI to Google, Facebook, and the World


Cade Metz - 2021
    Through the lives of Geoff Hinton and other major players, Metz explains this transformative technology and makes the quest thrilling.--Walter Isaacson, author of The Code Breaker Recipient of starred reviews in both Kirkus and Library JournalTHE UNTOLD TECH STORY OF OUR TIMEWhat does it mean to be smart? To be human? What do we really want from life and the intelligence we have, or might create?With deep and exclusive reporting, across hundreds of interviews, New York Times Silicon Valley journalist Cade Metz brings you into the rooms where these questions are being answered. Where an extraordinarily powerful new artificial intelligence has been built into our biggest companies, our social discourse, and our daily lives, with few of us even noticing.Long dismissed as a technology of the distant future, artificial intelligence was a project consigned to the fringes of the scientific community. Then two researchers changed everything. One was a sixty-four-year-old computer science professor who didn't drive and didn't fly because he could no longer sit down--but still made his way across North America for the moment that would define a new age of technology. The other was a thirty-six-year-old neuroscientist and chess prodigy who laid claim to being the greatest game player of all time before vowing to build a machine that could do anything the human brain could do.They took two very different paths to that lofty goal, and they disagreed on how quickly it would arrive. But both were soon drawn into the heart of the tech industry. Their ideas drove a new kind of arms race, spanning Google, Microsoft, Facebook, and OpenAI, a new lab founded by Silicon Valley kingpin Elon Musk. But some believed that China would beat them all to the finish line.Genius Makers dramatically presents the fierce conflict between national interests, shareholder value, the pursuit of scientific knowledge, and the very human concerns about privacy, security, bias, and prejudice. Like a great Victorian novel, this world of eccentric, brilliant, often unimaginably yet suddenly wealthy characters draws you into the most profound moral questions we can ask. And like a great mystery, it presents the story and facts that lead to a core, vital question:How far will we let it go?

Organizational Behavior: Human Behavior at Work


John W. Newstrom - 1977
    Blending theory with practice, this book provides applied advice.

Possible Minds: 25 Ways of Looking at AI


John Brockman - 2019
    It is the Second Coming and the Apocalypse at the same time: Good AI versus evil AI." --John BrockmanMore than sixty years ago, mathematician-philosopher Norbert Wiener published a book on the place of machines in society that ended with a warning: "we shall never receive the right answers to our questions unless we ask the right questions.... The hour is very late, and the choice of good and evil knocks at our door."In the wake of advances in unsupervised, self-improving machine learning, a small but influential community of thinkers is considering Wiener's words again. In Possible Minds, John Brockman gathers their disparate visions of where AI might be taking us.The fruit of the long history of Brockman's profound engagement with the most important scientific minds who have been thinking about AI--from Alison Gopnik and David Deutsch to Frank Wilczek and Stephen Wolfram--Possible Minds is an ideal introduction to the landscape of crucial issues AI presents. The collision between opposing perspectives is salutary and exhilarating; some of these figures, such as computer scientist Stuart Russell, Skype co-founder Jaan Tallinn, and physicist Max Tegmark, are deeply concerned with the threat of AI, including the existential one, while others, notably robotics entrepreneur Rodney Brooks, philosopher Daniel Dennett, and bestselling author Steven Pinker, have a very different view. Serious, searching and authoritative, Possible Minds lays out the intellectual landscape of one of the most important topics of our time.

Why Greatness Cannot Be Planned: The Myth of the Objective


Kenneth O. Stanley - 2015
    In Why Greatness Cannot Be Planned, Stanley and Lehman begin with a surprising scientific discovery in artificial intelligence that leads ultimately to the conclusion that the objective obsession has gone too far. They make the case that great achievement can't be bottled up into mechanical metrics; that innovation is not driven by narrowly focused heroic effort; and that we would be wiser (and the outcomes better) if instead we whole-heartedly embraced serendipitous discovery and playful creativity.Controversial at its heart, yet refreshingly provocative, this book challenges readers to consider life without a destination and discovery without a compass.

Big Data: A Revolution That Will Transform How We Live, Work, and Think


Viktor Mayer-Schönberger - 2013
    “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com

The Future Computed: Artificial Intelligence and its Role in Society


Microsoft Corporation - 2018
    It’s already happening in impressive ways. But as we’ve witnessed over the past 20 years, new technology also inevitably raises complex questions and broad societal concerns.” – Brad Smith and Harry Shum on The Future Computed. “As we look to a future powered by a partnership between computers and humans, it’s important that we address these challenges head on. How do we ensure that AI is designed and used responsibly? How do we establish ethical principles to protect people? How should we govern its use? And how will AI impact employment and jobs?” – Brad Smith and Harry Shum on The Future Computed. As Artificial Intelligence shows up in every aspect of our lives, Microsoft's top minds provide a guide discussing how we should prepare for the future. Whether you're a government leader crafting new laws, an entrepreneur looking to incorporate AI into your business, or a parent contemplating the future of education, this book explains the trends driving the AI revolution, identifies the complex ethics and workforce issues we all need to think about and suggests a path forward. Read more: The Future Computed: Artificial Intelligence and its role in society provides Microsoft’s perspective on where AI technology is going and the new societal issues it is raising – ensuring AI is designed and used responsibly, establishing ethical principles to protect people, and how AI will impact employment and jobs. The principles of fairness, reliability and safety, privacy and security, inclusiveness, transparency and accountability are critical to addressing the societal impacts of AI and building trust as AI becomes more and more a part of the products and services that people use at work and at home every day. A central theme in The Future Computed is that for AI to deliver on its potential drive widespread economic and social progress, the technology needs to be human-centered – combining the capabilities of computers with human capabilities to enable people to achieve more. But a human-centered approach can only be realized if researchers, policymakers, and leaders from government, business and civil society come together to develop a shared ethical framework for AI. This in turn will help foster responsible development of AI systems that will engender trust. Because in an increasingly AI-driven world the question is not what computers can do, it is what computers should do. The Future Computed also draws a few conclusions as we chart our path forward. First, the companies and countries that will fare best in the AI era will be those that embrace these changes rapidly and effectively. Second, while AI will help solve big societal problems, we must look to this future with a critical eye as there will be challenges as well as opportunities. Third, we need to act with a sense of shared responsibility because AI won’t be created by the tech sector alone. Finally, skilling-up for an AI-powered world involves more than science, technology, engineering and math. As computers behave more like humans, the social sciences and humanities will become grow in importance.

Machine, Platform, Crowd: Harnessing Our Digital Future


Andrew McAfee - 2017
    Now they’ve written a guide to help readers make the most of our collective future. Machine | Platform | Crowd outlines the opportunities and challenges inherent in the science fiction technologies that have come to life in recent years, like self-driving cars and 3D printers, online platforms for renting outfits and scheduling workouts, or crowd-sourced medical research and financial instruments.

Negotiation: Readings, Exercises, Cases


Roy J. Lewicki - 1992
    This edition explores the major concepts and theories of the psychology of bargaining and negotiation, and the dynamics of interpersonal and intergroup conflict and its resolution.

HBR's 10 Must Reads on AI, Analytics, and the New Machine Age (with bonus article "Why Every Company Needs an Augmented Reality Strategy" by Michael E. Porter and James E. Heppelmann)


Harvard Business Review - 2018
    Is your company ready?If you read nothing else on how intelligent machines are revolutionizing business, read these 10 articles. We've combed through hundreds of Harvard Business Review articles and selected the most important ones to help you understand how these technologies work together, how to adopt them, and why your strategy can't ignore them. In this book you'll learn how: Data science, driven by artificial intelligence and machine learning, is yielding unprecedented business insights Blockchain has the potential to restructure the economy Drones and driverless vehicles are becoming essential tools 3-D printing is making new business models possible Augmented reality is transforming retail and manufacturing Smart speakers are redefining the rules of marketing Humans and machines are working together to reach new levels of productivity This collection of articles includes "Artificial Intelligence for the Real World," by Thomas H. Davenport and Rajeev Ronanki; "Stitch Fix's CEO on Selling Personal Style to the Mass Market," by Katrina Lake; "Algorithms Need Managers, Too," by Michael Luca, Jon Kleinberg, and Sendhil Mullainathan; "Marketing in the Age of Alexa," by Niraj Dawar; "Why Every Organization Needs an Augmented Reality Strategy," by Michael E. Porter and James E. Heppelmann; "Drones Go to Work," by Chris Anderson; "The Truth About Blockchain," by Marco Iansiti and Karim R. Lakhani; "The 3-D Printing Playbook," by Richard A. D’Aveni; "Collaborative Intelligence: Humans and AI Are Joining Forces," by H. James Wilson and Paul R. Daugherty; "When Your Boss Wears Metal Pants," by Walter Frick; and "Managing Our Hub Economy," by Marco Iansiti and Karim R. Lakhani.

Neural Networks: A Comprehensive Foundation


Simon Haykin - 1994
    Introducing students to the many facets of neural networks, this text provides many case studies to illustrate their real-life, practical applications.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Neural Networks for Pattern Recognition


Christopher M. Bishop - 1996
    After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

Fundamentals of Deep Learning: Designing Next-Generation Artificial Intelligence Algorithms


Nikhil Buduma - 2015
    

Multiple View Geometry in Computer Vision


Richard Hartley - 2000
    This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data