Even Faster Web Sites


Steve Souders - 2009
    In this book, Steve Souders, web performance evangelist at Google and former Chief Performance Yahoo!, provides valuable techniques to help you optimize your site's performance.Souders' previous book, the bestselling High Performance Web Sites, shocked the web development world by revealing that 80% of the time it takes for a web page to load is on the client side. In Even Faster Web Sites, Souders and eight expert contributors provide best practices and pragmatic advice for improving your site's performance in three critical categories:JavaScript-Get advice for understanding Ajax performance, writing efficient JavaScript, creating responsive applications, loading scripts without blocking other components, and more.Network-Learn to share resources across multiple domains, reduce image size without loss of quality, and use chunked encoding to render pages faster.Browser-Discover alternatives to iframes, how to simplify CSS selectors, and other techniques. Speed is essential for today's rich media web sites and Web 2.0 applications. With this book, you'll learn how to shave precious seconds off your sites' load times and make them respond even faster.This book contains six guest chapters contributed by Dion Almaer, Doug Crockford, Ben Galbraith, Tony Gentilcore, Dylan Schiemann, Stoyan Stefanov, Nicole Sullivan, and Nicholas C. Zakas.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Effective Programming: More Than Writing Code


Jeff Atwood - 2012
    He needed a way to keep track of software development over time – whatever he was thinking about or working on. He researched subjects he found interesting, then documented his research with a public blog post, which he could easily find and refer to later. Over time, increasing numbers of blog visitors found the posts helpful, relevant and interesting. Now, approximately 100,000 readers visit the blog per day and nearly as many comment and interact on the site.Effective Programming: More Than Writing Code is your one-stop shop for all things programming. Jeff writes with humor and understanding, allowing for both seasoned programmers and newbies to appreciate the depth of his research. From such posts as“The Programmer’s Bill of Rights” and “Why Cant Programmers... Program?” to “Working With the Chaos Monkey,” this book introduces the importance of writing responsible code, the logistics involved, and how people should view it more as a lifestyle than a career.

Algorithms in a Nutshell


George T. Heineman - 2008
    Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will:Solve a particular coding problem or improve on the performance of an existing solutionQuickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to useGet algorithmic solutions in C, C++, Java, and Ruby with implementation tipsLearn the expected performance of an algorithm, and the conditions it needs to perform at its bestDiscover the impact that similar design decisions have on different algorithmsLearn advanced data structures to improve the efficiency of algorithmsWith Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.

React: Up and Running


Stoyan Stefanov - 2015
    With "React: Up and Running" you'll learn how to get off the ground with React, with no prior knowledge.This book teaches you how to build components, the building blocks of your apps, as well as how to organize the components into large-scale apps. In addition, you ll learn about unit testing and optimizing performance, while focusing on the application s data (and letting the UI take care of itself)."

Elements of Programming Interviews: The Insiders' Guide C++


Adnan Aziz - 2012
    The problems are challenging, well-motivated, and accessible. They are representative of the questions asked at interviews at the most exciting companies.The book begins with a summary of patterns for data structure, algorithms, and problem solving that will help you solve the most challenging interview problems. This is followed by chapters on basic and advanced data structures, algorithm design, concurrency, system design, probability and discrete mathematics. Each chapter starts with a brief review of key concepts and results followed by a deep and wide set of questions.EPI concludes with a summary of the nontechnical aspects of interviewing, including common mistakes, strategies for a great interview, perspectives from across the table, negotiating the best offer, and much more."This book is the best compilation of programming related problems I have seen. It is a great resource for a diverse set of topics when preparing for technical interviews, as a quick refresher in a subject area or when you are just looking for a brain teaser to challenge yourself." Shashank Gupta / Scaligent, formerly Engineering Manager, Amazon.com, Senior Engineering Manager, Yahoo!, Manager of Software Development, Cisco Systems

Team Geek: A Software Developer's Guide to Working Well with Others


Brian W. Fitzpatrick - 2012
    And in a perfect world, those who produce the best code are the most successful. But in our perfectly messy world, success also depends on how you work with people to get your job done.In this highly entertaining book, Brian Fitzpatrick and Ben Collins-Sussman cover basic patterns and anti-patterns for working with other people, teams, and users while trying to develop software. It's valuable information from two respected software engineers whose popular video series, "Working with Poisonous People," has attracted hundreds of thousands of viewers.You'll learn how to deal with imperfect people--those irrational and unpredictable beings--in the course of your work. And you'll discover why playing well with others is at least as important as having great technical skills. By internalizing the techniques in this book, you'll get more software written, be more influential, be happier in your career.

Node.js Design Patterns


Mario Casciaro - 2014
    What You Will Learn Design and implement a series of server-side JavaScript patterns so you understand why and when to apply them in different use case scenarios Understand the fundamental Node.js components and use them to their full potential Untangle your modules by organizing and connecting them coherently Reuse well-known solutions to circumvent common design and coding issues Deal with asynchronous code with comfort and ease Identify and prevent common problems, programming errors, and anti-patterns In Detail Node.js is a massively popular software platform that lets you use JavaScript to easily create scalable server-side applications. It allows you to create efficient code, enabling a more sustainable way of writing software made of only one language across the full stack, along with extreme levels of reusability, pragmatism, simplicity, and collaboration. Node.js is revolutionizing the web and the way people and companies create their software.In this book, we will take you on a journey across various ideas and components, and the challenges you would commonly encounter while designing and developing software using the Node.js platform. You will also discover the "Node.js way" of dealing with design and coding decisions.The book kicks off by exploring the fundamental principles and components that define the platform. It then shows you how to master asynchronous programming and how to design elegant and reusable components using well-known patterns and techniques. The book rounds off by teaching you the various approaches to scale, distribute, and integrate your Node.js application.

Computer Networks


Andrew S. Tanenbaum - 1981
    In this revision, the author takes a structured approach to explaining how networks function.

Engineering a Compiler


Keith D. Cooper - 2003
    No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.

Problem Solving with C++: The Object of Programming


Walter J. Savitch - 1995
    It introduces the use of classes; shows how to write ADTs that maximize the perfomance of C++ in creating reusable code; and provides coverage of all important OO functions, including inheritance, polymorphism and encapsulation.

C# in Depth


Jon Skeet - 2008
    With the many upgraded features, C# is more expressive than ever. However, an in depth understanding is required to get the most out of the language.C# in Depth, Second Edition is a thoroughly revised, up-to-date book that covers the new features of C# 4 as well as Code Contracts. In it, you'll see the subtleties of C# programming in action, learning how to work with high-value features that you'll be glad to have in your toolkit. The book helps readers avoid hidden pitfalls of C# programming by understanding "behind the scenes" issues.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Computational Complexity


Christos H. Papadimitriou - 1993
    It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Computer Networking: A Top-Down Approach


James F. Kurose - 2000
    Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.