Book picks similar to
Computer Organization and Architecture: Designing for Performance by William Stallings
computer-science
reference
non-fiction
programming
Engineering a Compiler
Keith D. Cooper - 2003
No longer is execution speed the sole criterion for judging compiled code. Today, code might be judged on how small it is, how much power it consumes, how well it compresses, or how many page faults it generates. In this evolving environment, the task of building a successful compiler relies upon the compiler writer's ability to balance and blend algorithms, engineering insights, and careful planning. Today's compiler writer must choose a path through a design space that is filled with diverse alternatives, each with distinct costs, advantages, and complexities.Engineering a Compiler explores this design space by presenting some of the ways these problems have been solved, and the constraints that made each of those solutions attractive. By understanding the parameters of the problem and their impact on compiler design, the authors hope to convey both the depth of the problems and the breadth of possible solutions. Their goal is to cover a broad enough selection of material to show readers that real tradeoffs exist, and that the impact of those choices can be both subtle and far-reaching.Authors Keith Cooper and Linda Torczon convey both the art and the science of compiler construction and show best practice algorithms for the major passes of a compiler. Their text re-balances the curriculum for an introductory course in compiler construction to reflect the issues that arise in current practice.
HTML and CSS: Design and Build Websites
Jon Duckett - 2011
Joining the professional web designers and programmers are new audiences who need to know a little bit of code at work (update a content management system or e-commerce store) and those who want to make their personal blogs more attractive. Many books teaching HTML and CSS are dry and only written for those who want to become programmers, which is why this book takes an entirely new approach. • Introduces HTML and CSS in a way that makes them accessible to everyone—hobbyists, students, and professionals—and it’s full-color throughout • Utilizes information graphics and lifestyle photography to explain the topics in a simple way that is engaging • Boasts a unique structure that allows you to progress through the chapters from beginning to end or just dip into topics of particular interest at your leisureThis educational book is one that you will enjoy picking up, reading, then referring back to. It will make you wish other technical topics were presented in such a simple, attractive and engaging way!
The Art of UNIX Programming
Eric S. Raymond - 2003
This book attempts to capture the engineering wisdom and design philosophy of the UNIX, Linux, and Open Source software development community as it has evolved over the past three decades, and as it is applied today by the most experienced programmers. Eric Raymond offers the next generation of hackers the unique opportunity to learn the connection between UNIX philosophy and practice through careful case studies of the very best UNIX/Linux programs.
Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)
Jiawei Han - 2000
Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site
Database Systems: The Complete Book
Jeffrey D. Ullman - 1999
Written by well-known computer scientists, this introduction to database systems offers a comprehensive approach, focusing on database design, database use, and implementation of database applications and database management systems. The first half of the book provides in-depth coverage of databases from the point of view of the database designer, user, and application programmer. It covers the latest database standards SQL:1999, SQL/PSM, SQL/CLI, JDBC, ODL, and XML, with broader coverage of SQL than most other texts. The second half of the book provides in-depth coverage of databases from the point of view of the DBMS implementor. It focuses on storage structures, query processing, and transaction management. The book covers the main techniques in these areas with broader coverage of query optimization than most other texts, along with advanced topics including multidimensional and bitmap indexes, distributed transactions, and information integration techniques.
Introduction to Information Retrieval
Christopher D. Manning - 2008
Written from a computer science perspective by three leading experts in the field, it gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Although originally designed as the primary text for a graduate or advanced undergraduate course in information retrieval, the book will also create a buzz for researchers and professionals alike.
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Digital Design
M. Morris Mano - 1984
The book teaches the basic tools for the design of digital circuits in a clear, easily accessible manner. New to This Edition: *Nine sections on Verilog Hardware Description Language (HDL) inserted in discrete sections, allowing the material to be covered or skipped as desired. The Verilog HDL presentation is at a suitable level for beginning students who are learning digital circuits for the first time. *Reorganized material on combinational circuits is now covered in a single chapter. *The emphasis in the sequential circuits chapters is now on design with D flip-flops instead of JK and SR flip-flops. *The material on memory and programmable logic is now consolidated in one chapter. *Chapter 8 consists mostly of new material and now covers digital design in the Register Transfer Level (P) FL), preparing the reader for more advanced design projects and further Verilog HDL studies. *A new section in Chapter 11 supplements the laboratory experiments with HDL experiments. These unable the reader to check the circuits designed in the laboratory by means of hardware components and/or by HDL simulation.* Text accompanied by Verilog simulator software-SynaptiCAD's VeriLogger Pro evaluation version, a Verilog simulation environment that combines all of the features of a traditional Verilog simulator with a powerful graphical test vector generator. Fast model testing in VeriLogger Pro allows the reader to perform bottom-up testing of every model in a design. All of the HDL examples in the book can be found on the CD-ROM. *A Companion Website includes resources for instructors and students such as transparency masters of all figures in the book, all HDL code examples from the book, a Verilog tutorial, tutorials on using the VeriLogger Pro software, and more. It can be found at http://www.prenhall.com/mano
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Software Architecture in Practice
Len Bass - 2003
Distinct from the details of implementation, algorithm, and data representation, an architecture holds the key to achieving system quality, is a reusable asset that can be applied to subsequent systems, and is crucial to a software organization's business strategy.Drawing on their own extensive experience, the authors cover the essential technical topics for designing, specifying, and validating a system. They also emphasize the importance of the business context in which large systems are designed. Their aim is to present software architecture in a real-world setting, reflecting both the opportunities and constraints that companies encounter. To that end, case studies that describe successful architectures illustrate key points of both technical and organizational discussions.Topics new to this edition include:
Architecture design and analysis, including the Architecture Tradeoff Analysis Method (ATAM)
Capturing quality requirements and achieving them through quality scenarios and tactics
Using architecture reconstruction to recover undocumented architectures
Documenting architectures using the Unified Modeling Language (UML)
New case studies, including Web-based examples and a wireless Enterprise JavaBeans (EJB) system designed to support wearable computers
The financial aspects of architectures, including use of the Cost Benefit Analysis Method (CBAM) to make decisions
If you design, develop, or manage the building of large software systems (or plan to do so), or if you are interested in acquiring such systems for your corporation or government agency, use Software Architecture in Practice, Second Edition, to get up to speed on the current state of software architecture.
C Primer Plus
Stephen Prata - 1984
From extended integer types and compound literals to Boolean support and variable-length arrays, this book helps you learn to create practical and real-world applications with C programming. It contains review questions and programming exercises.
Building Microservices: Designing Fine-Grained Systems
Sam Newman - 2014
But developing these systems brings its own set of headaches. With lots of examples and practical advice, this book takes a holistic view of the topics that system architects and administrators must consider when building, managing, and evolving microservice architectures.Microservice technologies are moving quickly. Author Sam Newman provides you with a firm grounding in the concepts while diving into current solutions for modeling, integrating, testing, deploying, and monitoring your own autonomous services. You'll follow a fictional company throughout the book to learn how building a microservice architecture affects a single domain.Discover how microservices allow you to align your system design with your organization's goalsLearn options for integrating a service with the rest of your systemTake an incremental approach when splitting monolithic codebasesDeploy individual microservices through continuous integrationExamine the complexities of testing and monitoring distributed servicesManage security with user-to-service and service-to-service modelsUnderstand the challenges of scaling microservice architectures
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Game Programming Patterns
Robert Nystrom - 2011
Commercial game development expert Robert Nystrom presents an array of general solutions to problems encountered in game development. For example, you'll learn how double-buffering enables a player to perceive smooth and realistic motion, and how the service locator pattern can help you provide access to services such as sound without coupling your code to any particular sound driver or sound hardware. Games have much in common with other software, but also a number of unique constraints. Some of the patterns in this book are well-known in other domains of software development. Other of the patterns are unique to gaming. In either case, Robert Nystrom bridges from the ivory tower world of software architecture to the in-the-trenches reality of hardcore game programming. You'll learn the patterns and the general problems that they solve. You'll come away able to apply powerful and reusable architectural solutions that enable you to produce higher quality games with less effort than before. Applies classic design patterns to game programming. Introduces new patterns specific to game programming. Brings abstract software architecture down to Earth with approachable writing and an emphasis on simple code that shows each pattern in practice. What you'll learn Overcome architectural challenges unique to game programming Apply lessons from the larger software world to games. Tie different parts of a game (graphics, sound, AI) into a cohesive whole. Create elegant and maintainable architecture. Achieve good, low-level performance. Gain insight into professional, game development. Who this book is forGame Programming Patterns is aimed at professional game programmers who, while successful in shipping games, are frustrated at how hard it sometimes is to add and modify features when a game is under development. Game Programming Patterns shows how to apply modern software practices to the problem of game development while still maintaining the blazing-fast performance demanded by hard-core gamers. Game Programming Patterns also appeals to those learning about game programming in their spare time. Hobbyists and aspiring professionals alike will find much to learn in this book about pathfinding, collision detection, and other game-programming problem domains.
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect