Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life


Albert-László Barabási - 2002
    Albert-László Barabási, the nation’s foremost expert in the new science of networks and author of Bursts, takes us on an intellectual adventure to prove that social networks, corporations, and living organisms are more similar than previously thought. Grasping a full understanding of network science will someday allow us to design blue-chip businesses, stop the outbreak of deadly diseases, and influence the exchange of ideas and information. Just as James Gleick and the Erdos–Rényi model brought the discovery of chaos theory to the general public, Linked tells the story of the true science of the future and of experiments in statistical mechanics on the internet, all vital parts of what would eventually be called the Barabási–Albert model.

Algebra


Aurelio Baldor - 1983
    This revised edition includes a CD-Rom with exercises that will help the student have a better understanding of equations, formulas, etc.

The Art and Craft of Problem Solving


Paul Zeitz - 1999
    Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

Pure Mathematics: A First Course


J.K. Backhouse - 1974
    This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.

What Is Mathematics?: An Elementary Approach to Ideas and Methods


Richard Courant - 1941
    Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.

Incompleteness: The Proof and Paradox of Kurt Gödel


Rebecca Goldstein - 2005
    "A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.

Fermat's Last Theorem


Amir D. Aczel - 1996
    It would become the world's most baffling mathematical mystery. Simple, elegant, and utterly impossible to prove, Fermat's Last Theorem captured the imaginations of amateur and professional mathematicians for over three centuries. For some it became a wonderful passion. For others it was an obsession that led to deceit, intrigue, or insanity. In a volume filled with the clues, red herrings, and suspense of a mystery novel, Dr. Amir Aczel reveals the previously untold story of the people, the history, and the cultures that lie behind this scientific triumph. From formulas devised for the farmers of ancient Babylonia to the dramatic proof of Fermat's theorem in 1993, this extraordinary work takes us along on an exhilarating intellectual treasure hunt. Revealing the hidden mathematical order of the natural world in everything from stars to sunflowers, "Fermat's Last Theorem" brilliantly combines philosophy and hard science with investigative journalism. The result: a real-life detective story of the intellect, at once intriguing, thought-provoking, and impossible to put down.

Euler's Gem: The Polyhedron Formula and the Birth of Topology


David S. Richeson - 2008
    Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea.From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Voices of Cancer: What We Really Want, What We Really Need


Lynda Wolters - 2019
    Voices of Cancer is here to help. Every cancer story is different, but there is one commonality: both patients and the people supporting them often struggle to properly articulate their wants and needs through particularly challenging‚ and in many cases, uncharted‚ territory. LyndaWolters knows firsthand: she was diagnosed with stage 4 terminal mantle cell lymphoma in August of 2016.Voices of Cancer offers a candid look into the world of a cancer patient, informed by Lynda's own story and conversations had with dozens of patients weighing in on their needs, wants, and dislikes as they navigate the complex world of diagnosis, treatment, and beyond. With comprehensive and accessible insight from people who've been there, Voices of Cancer helps educate, dispel fears, and start positive conversations about what a cancer diagnosis truly means, while shining a light on how best to support the patient.

Multivariable Calculus


James Stewart - 1991
    In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.

Problems in Mathematics with Hints and Solutions


V. Govorov - 1996
    Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C

Elementary Statistics: A Step by Step Approach


Allan G. Bluman - 1992
    The book is non-theoretical, explaining concepts intuitively and teaching problem solving through worked examples and step-by-step instructions. This edition places more emphasis on conceptual understanding and understanding results. This edition also features increased emphasis on Excel, MINITAB, and the TI-83 Plus and TI 84-Plus graphing calculators, computing technologies commonly used in such courses.

Surfing Through Hyperspace: Understanding Higher Universes in Six Easy Lessons


Clifford A. Pickover - 1999
    With this astonishing guidebook, Surfing Through Hyperspace, you need not be a mathematician or an astrophysicist to explore the all-but-unfathomable concepts of hyperspace and higher-dimensional geometry.No subject in mathematics has intrigued both children and adults as much as the idea of a fourth dimension. Philosophers and parapsychologists have meditated on this mysterious space that no one can point to but may be all around us. Yet this extra dimension has a very real, practical value to mathematicians and physicists who use it every day in their calculations. In the tradtion of Flatland, and with an infectious enthusiasm, Clifford Pickover tackles the problems inherent in our 3-D brains trying to visualize a 4-D world, muses on the religious implications of the existence of higher-dimensional consciousness, and urges all curious readers to venture into the unexplored territory lying beyond the prison of the obvious. Pickover alternates sections that explain the science of hyperspace with sections that dramatize mind-expanding concepts through a fictional dialogue between two futuristic FBI agents who dabble in the fourth dimension as a matter of national security. This highly accessible and entertaining approach turns an intimidating subject into a scientific game open to all dreamers.Surfing Through Hyperspace concludes with a number of puzzles, computer experiments and formulas for further exploration, inviting readers to extend their minds across this inexhaustibly intriguing scientific terrain.

The Cartoon Guide to Statistics


Larry Gonick - 1993
    Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.

The Mathematical Recreations of Lewis Carroll: Pillow Problems and a Tangled Tale


Lewis Carroll - 1893
    L. Dodgson) have now been reprinted in their entirety for the pleasure of modern enthusiasts of mathematical puzzles. Written by the 19th-century mathematician who gave us Alice in Wonderland and Through the Looking Glass, they contain an unusual combination of wit and mathematical intricacy that will test your mathematical ingenuity and provide hours of stimulating entertainment.Pillow-Problems is one of the rarest of all Lewis Carroll's works. It contains 72 mathematical posers ranging from those that can be solved by arithmetic, simple algebra, or plane geometry, to those that require more advanced algebra, trigonometry, algebraical geometry, differential calculus, and transcendental probabilities. Both numerical answers and fully worked out solutions are given, each in a separate section so that you can test your methods of problem-solving even after you have looked up the answer to a problem.In A Tangled Tale, Carroll embodies some of his most perplexing mathematical puzzles in the ten knots or chapters of a delightful story that has all the charm and wit of his better-known works. The Tale was originally printed as a monthly magazine serial, and many readers sent in solutions to the problems that were posed in it. In the long Appendix to The Tale, which contains the answers and solutions to the problems, Carroll uses the answers sent in by readers as the basis for illuminating and entertaining discussions of the many wrong ways in which the problems can be attacked, as well as the right ways.