Book picks similar to
Gravity: Newtonian, Post-Newtonian, Relativistic by Eric Poisson
physics
0-buy-candidate
science-mathematics
gravity-cosmology
Modern abc of physics class 11
ABc of physics
Pattern. To Provide clarity of the subject, the whole text is studded with The Jargon, Key point, Watch out and Self-test Question Window to Formula forms a new feature of the present revised edition. It contains a direct and simple formula based Numerical Problem, which will tell the students as to how the formula derived in an article is to be used to solve the problem. The article work in each chapter of unit is coupled with well graded and carefully selected Solved Numerical Problems. These Solved Numerical Problems have been categorized into two Parts. I from Board Examinations and II from Competitive Engineering Examinations, such as I.I.T., Roorkee and I.S.M., Dhanbad. Many such problems have been provided with solutions by adopting a novel technique in the form of Thought Process.
Bang!: The Complete History of the Universe
Brian May - 2006
He's certainly been thinking about it lately. May, a freshly minted astrophysics Ph.D., joins forces with legendary astronomer Patrick Moore and astrophysicist Chris Lintott in Bang! to consider the history of the universe from the Big Bang to Heat Death.Space, time, and matter were birthed 13.7 billion years ago and will continue on longer than we are able to comprehend. Infinitesimally small at first, the Universe is immense and ever expanding. Bang! explains how it all started, takes you on a tour of what is known about the evolution of the Universe, and posits how the end of time will come about.This fascinating book includes photographs, short biographies of key figures, an at-a-glance timeline, a glossary of terms, and suggested resources for further exploration.Based on the work of history’s most brilliant scientific minds, this amazing story features clear, straightforward discussions of the most perplexing and compelling aspects of existence—from the formation of stars, planets, and other galactic bodies to black holes, quasars, anti-matter, and dark matter to the emergence of life and the possibility that it could exist elsewhere.Pick up a copy of Bang! It will, it will rock you.
Quantum Physics: What Everyone Needs to Know®
Michael G. Raymer - 2017
However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.
First Light: Switching on Stars at the Dawn of Time
Emma Chapman - 2020
There's a lot for astronomers to be smug about. But when it comes to understanding how the Universe began and grew up we are literally in the dark ages. In effect, we are missing the first one billion years from the timeline of the Universe.This brief but far-reaching period in the Universe's history, known to astrophysicists as the 'Epoch of Reionisation', represents the start of the cosmos as we experience it today. The time when the very first stars burst into life, when darkness gave way to light. After hundreds of millions of years of dark, uneventful expansion, one by the one these stars suddenly came into being. This was the point at which the chaos of the Big Bang first began to yield to the order of galaxies, black holes and stars, kick-starting the pathway to planets, to comets, to moons, and to life itself.Incorporating the very latest research into this branch of astrophysics, this book sheds light on this time of darkness, telling the story of these first stars, hundreds of times the size of the Sun and a million times brighter, lonely giants that lived fast and died young in powerful explosions that seeded the Universe with the heavy elements that we are made of. Emma Chapman tells us how these stars formed, why they were so unusual, and what they can teach us about the Universe today. She also offers a first-hand look at the immense telescopes about to come on line to peer into the past, searching for the echoes and footprints of these stars, to take this period in the Universe's history from the realm of theoretical physics towards the wonder of observational astronomy.
The Best American Science Writing 2000
James Gleick - 2000
The first volume in this annual series of the best writing by Americans, meticulously selected by bestselling author James Gleick, one of the foremost chronicles of scientific social history, debuts with a stellar collection of writers and thinkers. Many of these cutting-edge essays offer glimpses of new realms of discovery and thought, exploring territory that is unfamiliar to most of us, or finding the unexpected in the midst of the familiar. Nobel Laureate physicist Steven Weinberg challenges the idea of whether the universe has a designer; Pulitzer Prize winner Natalie Angier reassesses caveman (and-woman) couture; bestselling author and Darwinian theorist Stephen Jay Gould makes a claim for the man whose ideas Darwin discredited; Timothy Ferris proposes a realistic alternative to wrap-speed interseller travel; neurologist and bestselling author Oliver Sacks reminisces about his first loves-chemistry and math. This diverse, stimulating and accessible collection is required reading for anyone who wants to travel to the frontier of knowledge.
What If the Earth Had Two Moons?: And Nine Other Thought-Provoking Speculations on the Solar System
Neil F. Comins - 2010
In What If the Earth Had Two Moons, Neil Comins leads us on a fascinating ten-world journey as we explore what our planet would be like under alternative astronomical conditions. In each case, the Earth would be different, often in surprising ways.
The title chapter, for example, gives us a second moon orbiting closer to Earth than the one we have now. The night sky is a lot brighter, but that won't last forever. Eventually the moons collide, with one extra-massive moon emerging after a period during which Earth sports a Saturn-like ring.
This and nine and other speculative essays provide us with insights into the Earth as it exists today, while shedding new light on the burgeoning search for life on planets orbiting other stars.
Appealing to adult and young adult readers alike, this book follows on the author's previous bestseller, What If the Moon Didn't Exist?, with completely new scenarios backed by the latest astronomical research.
How to Make an Apple Pie from Scratch: In Search of the Recipe for Our Universe
Harry Cliff - 2021
He ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the Antimatter Factory, where the stuff of science fiction is manufactured daily (and we're close to knowing whether it falls up). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental nature of matter.Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding--and misunderstandings--of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on.A transfixing deep dive into origins of our world, How to Make an Apple Pie from Scratch examines not just the makeup of our universe, but the awe-inspiring, improbable fact that it exists at all.
How It Began: A Time-Traveler's Guide to the Universe
Chris Impey - 2012
Because it takes time for light to travel, we see more and more distant regions of the universe as they were in the successively greater past. Impey uses this concept—"look-back time"—to take us on an intergalactic tour that is simultaneously out in space and back in time. Performing a type of cosmic archaeology, Impey brilliantly describes the astronomical clues that scientists have used to solve fascinating mysteries about the origins and development of our universe.The milestones on this journey range from the nearby to the remote: we travel from the Moon, Jupiter, and the black hole at the heart of our galaxy all the way to the first star, the first ray of light, and even the strange, roiling conditions of the infant universe, an intense and volatile environment in which matter was created from pure energy. Impey gives us breathtaking visual descriptions and also explains what each landmark can reveal about the universe and its history. His lucid, wonderfully engaging scientific discussions bring us to the brink of modern cosmology and physics, illuminating such mind-bending concepts as invisible dimensions, timelessness, and multiple universes.A dynamic and unforgettable portrait of the cosmos, How It Began will reward its readers with a deeper understanding of the universe we inhabit as well as a renewed sense of wonder at its beauty and mystery.
Einstein for Everyone
Robert L. Piccioni - 2010
Nor do you need to be a great scientist to appreciate the exciting discoveries and intriguing mysteries of our universe. Dr. Robert piccioni brings the excitement of modern scientific discoveries to general audiences. He makes the key facts and concepts understandable without "dumbing" them down. He presents them in a friendly, conversational manner and includes many personal anecdotes about the people behind the science. With 33 images and over 100 graphics, this book explains the real science behind the headlines and sound bites. Learn all about:our universe: how big? how old? what came before?the big bang, black holes and supernovaequantum mechanics and uncertaintyhow the immense and the minute are connectedwhat is special about general relativityhow mankind can become earth's best friend
The Wizard of Quarks: A Fantasy of Particle Physics
Robert Gilmore - 2000
This time physicist Robert Gilmore takes us on a journey with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the Wizard of Oz story, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in an atomic garden, where atoms and molecules are produced. See how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles.
Atom
Piers Bizony - 2004
Its tale is one riddled with jealousy, rivalry, missed opportunities and moments of genius. Piers Bizony tells the story of the young misfit New Zealander, Ernest Rutherford, who showed that the atom consisted mainly of empty space, a discovery that turned 200 years of classical physics on its head, and the brilliant Dane, Niels Bohr, who made the next great leap into the incredible world of quantum theory. Yet he and a handful of other Young Turks in this revolutionary new science weren't prepared for the shocks that Nature had up her sleeve. At the dawn of the Atomic Age, a dangerous new force was unleashed with terrifying speed...
Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think
David Lindley - 1996
Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.
Introducing Time
Craig Callender - 1997
Traces the history of time from Augustine's suggestion that there is no time, to the flowing time of Newton, the static time of Einstein, and then back, to the idea that there is no time in quantum gravity.
Einstein's Shadow: A Black Hole, a Band of Astronomers, and the Quest to See the Unseeable
Seth Fletcher - 2018
But Shep Doeleman and a global coalition of scientists are on the cusp of doing just that.With exclusive access to the team, journalist Seth Fletcher spent five years following Shep and an extraordinary cast of characters as they assembled the Event Horizon Telescope, a virtual radio observatory the size of the Earth. He witnessed their struggles, setbacks, and breakthroughs, and along the way, he explored the latest thinking on the most profound questions about black holes. Do they represent a limit to our ability to understand reality? Or will they reveal the clues that lead to the long-sought Theory of Everything?Fletcher transforms astrophysics into something exciting, accessible, and immediate, taking us on an incredible adventure to better understand the complexity of our galaxy, the boundaries of human perception and knowledge, and how the messy human endeavor of science really works.Weaving a compelling narrative account of human ingenuity with excursions into cutting-edge science, Einstein’s Shadow is a tale of great minds on a mission to change the way we understand our universe—and our place in it.