Higgs - The Invention and Discovery of the ‘God Particle’


Jim Baggott - 2012
    So what is this particle called the Higgs boson? Why does it matter so much? What does this "God particle" tells us about the Universe? And was finding it really worth all the effort? The short answer is yes, and there was much at stake: our basic model for the building blocks of the Universe, the Standard Model, would have been in tatters if there was no Higgs particle. The Higgs field had been proposed as the way in which particles gain mass - a fundamental property of matter. Little wonder the hunt and discovery have produced such intense media interest. Here, Jim Baggott explains the science behind the discovery, looking at how the concept of a Higgs field was invented, how it is part of the Standard Model, and its implications on our understanding of all mass in the Universe.

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

One, Two, Three...Infinity: Facts and Speculations of Science


George Gamow - 1947
    . . full of intellectual treats and tricks, of whimsy and deep scientific philosophy. It is highbrow entertainment at its best, a teasing challenge to all who aspire to think about the universe." — New York Herald TribuneOne of the world's foremost nuclear physicists (celebrated for his theory of radioactive decay, among other accomplishments), George Gamow possessed the unique ability of making the world of science accessible to the general reader.He brings that ability to bear in this delightful expedition through the problems, pleasures, and puzzles of modern science. Among the topics scrutinized with the author's celebrated good humor and pedagogical prowess are the macrocosm and the microcosm, theory of numbers, relativity of space and time, entropy, genes, atomic structure, nuclear fission, and the origin of the solar system.In the pages of this book readers grapple with such crucial matters as whether it is possible to bend space, why a rocket shrinks, the "end of the world problem," excursions into the fourth dimension, and a host of other tantalizing topics for the scientifically curious. Brimming with amusing anecdotes and provocative problems, One Two Three . . . Infinity also includes over 120 delightful pen-and-ink illustrations by the author, adding another dimension of good-natured charm to these wide-ranging explorations.Whatever your level of scientific expertise, chances are you'll derive a great deal of pleasure, stimulation, and information from this unusual and imaginative book. It belongs in the library of anyone curious about the wonders of the scientific universe. "In One Two Three . . . Infinity, as in his other books, George Gamow succeeds where others fail because of his remarkable ability to combine technical accuracy, choice of material, dignity of expression, and readability." — Saturday Review of Literature

Free to Make: How the Maker Movement is Changing Our Schools, Our Jobs, and Our Minds


Dale Dougherty - 2016
    Dale Dougherty, creator of MAKE: magazine and the Maker Faire, provides a guided tour of the....

Conceptual Physics


Paul G. Hewitt - 1971
    Hewitt's text is famous for engaging readers with analogies and imagery from real-world situations that build a strong conceptual understanding of physical principles ranging from classical mechanics to modern physics. With this strong foundation, readers are better equipped to understand the equations and formulas of physics, and motivated to explore the thought-provoking exercises and fun projects in each chapter. Included in the package is the workbook. Mechanics, Properties of Matter, Heat, Sound, Electricity and Magnetism, Light, Atomic and Nuclear Physics, Relativity. For all readers interested in conceptual physics.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

Building Thinking Classrooms in Mathematics, Grades K-12: 14 Teaching Practices for Enhancing Learning


Peter Liljedahl - 2020
     Building Thinking Classrooms in Mathematics, Grades K-12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guideProvides the what, why, and how of each practice Includes firsthand accounts of how these practices foster thinking Offers a plethora of macro moves, micro moves, and rich tasks to get started

The Heart of Mathematics: An Invitation to Effective Thinking


Edward B. Burger - 1999
    In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.

Faraday, Maxwell, and the Electromagnetic Field: How Two Men Revolutionized Physics


Nancy Forbes - 2014
    This is the story of how these two men - separated in age by forty years - discovered the existence of the electromagnetic field and devised a radically new theory which overturned the strictly mechanical view of the world that had prevailed since Newton's time.The authors, veteran science writers with special expertise in physics and engineering, have created a lively narrative that interweaves rich biographical detail from each man's life with clear explanations of their scientific accomplishments. Faraday was an autodidact, who overcame class prejudice and a lack of mathematical training to become renowned for his acute powers of experimental observation, technological skills, and prodigious scientific imagination. James Clerk Maxwell was highly regarded as one of the most brilliant mathematical physicists of the age. He made an enormous number of advances in his own right. But when he translated Faraday's ideas into mathematical language, thus creating field theory, this unified framework of electricity, magnetism and light became the basis for much of later, 20th-century physics.Faraday's and Maxwell's collaborative efforts gave rise to many of the technological innovations we take for granted today - from electric power generation to television, and much more. Told with panache, warmth, and clarity, this captivating story of their greatest work - in which each played an equal part - and their inspiring lives will bring new appreciation to these giants of science.

Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers


Rudra Pratap - 2005
    Its broad appeal lies in its interactive environment with hundreds of built-in functions for technical computation, graphics, and animation. In addition, it provides easy extensibility with its own high-level programming language. Enhanced by fun and appealing illustrations, Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers employs a casual, accessible writing style that shows users how to enjoy using MATLAB.

Math Riddles For Smart Kids: Math Riddles and Brain Teasers that Kids and Families will Love


M. Prefontaine - 2017
    It is a collection of 150 brain teasing math riddles and puzzles. Their purpose is to make children think and stretch the mind. They are designed to test logic, lateral thinking as well as memory and to engage the brain in seeing patterns and connections between different things and circumstances. They are laid out in three chapters which get more difficult as you go through the book, in the author’s opinion at least. The answers are at the back of the book if all else fails. These are more difficult riddles and are designed to be attempted by children from 10 years onwards, as well as participation from the rest of the family. Tags: Riddles and brain teasers, riddles and trick questions, riddles book, riddles book for kids, riddles for kids, riddles for kids aged 9-12, riddles and puzzles, jokes and riddles, jokes book, jokes book for kids, jokes children, jokes for kids, jokes kids, puzzle book

Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations


Richard Elwes - 2010
    Distilled into 1001 mini-essays arranged thematically, this unique book moves steadily from the basics through to the most advanced areas of math, making it the ideal guide for both the beginner and the math wiz.The book covers all of the fundamental mathematical disciplines:Geometry Numbers Analysis Logic Algebra Probability and statistics Applied mathematics Discrete mathematics Games and recreational mathematics Philosophy and metamathematicsExpert mathematician Richard Elwes explains difficult concepts in the simplest language with a minimum of jargon. Along the way he reveals such mathematical magic as how to count to 1023 using just 10 fingers and how to make an unbreakable code.Enlightening and entertaining, Mathematics 1001 makes the language of math come alive.

Modern Physics


Kenneth S. Krane - 1995
    Topics discussed include solid state physics, radioactivity, statistical physics, cosmology, astrophysics, the Schrodinger equation and more.

The Physics of Superheroes


James Kakalios - 2006
    Along the way he provides an engaging and witty commentary while introducing the lay reader to both classic and cutting-edge concepts in physics, including:What Superman's strength can tell us about the Newtonian physics of force, mass, and accelerationHow Iceman's and Storm's powers illustrate the principles of thermal dynamicsThe physics behind the death of Spider-Man's girlfriend Gwen StacyWhy physics professors gone bad are the most dangerous evil geniuses!

Advanced Engineering Mathematics


K.A. Stroud - 2003
    You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.