Preparing to Teach in the Lifelong Learning Sector


Ann Gravells - 2008
    This includes further education, adult and community learning, work-based learning, the forces and offender learning and skills. It is easy to read with plenty of practical activities and examples throughout and the content is fully linked to the Teacher Training Standards. Please note: This book has since been updated to reflect the new title of the qualification: The Award in Education and Training.The qualification unit content contained in the appendices has since changed, and some legislation mentioned in the book has been updated.

A Time To Advance: Understanding the Significance of the Hebrew


Chuck D. Pierce - 2011
    As you identify your tribe and divinely align in time with God's calendar, you will discover how to find your position in God's Kingdom, how to war effectively for your inheritance, and then walk in His blessings.A Time to Advance: Understanding the Significance of the Hebrew Tribes and Months will help you understand how God is developing His whole conquering army for today. You will also understand how each part moves together, and the redemptive quality of God's covenant plan for Israel. This will help ground you on how we are grafted into a movement in days ahead.As you learn how to think like God thinks and study the Hebrew tribes and months, you will receive prophetic understanding of how the Lord orders your steps throughout the year. You will also see your place in God's next Triumphant Reserve that is rising in the Earth today!

A Concise History of Mathematics


Dirk Jan Struik - 1948
    Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.

Number Freak: From 1 to 200- The Hidden Language of Numbers Revealed


Derrick Niederman - 2009
    Includes such gems as:? There are 42 eyes in a deck of cards, and 42 dots on a pair of dice ? In order to fill in a map so that neighboring regions never get the same color, one never needs more than four colors ? Hells Angels use the number 81 in their insignia because the initials H and A are the eighth and first numbers in the alphabet respectively

BUNKER 1945 - The Last Ten Days of ADOLF HITLER


Christian Shakespeare - 2019
    Twenty-two years later, he did. April 1945 – Berlin. The world had been at war for more than five-and-a-half years – approximately seventy million people were dead across the globe. The epicentre of the twelve-year-old Third Reich was now surrounded, enveloped by bitter Soviet forces hardened by Nazi barbarity in the east over the last four years. As the buildings were blasted into rubble, pounded by Russian guns and bombs, before their troops and tanks, Hitler was hunkered down in his last headquarters – the dark and damp bunker under the Reich Chancellery. As the Third Reich began to crumble as fast as the city’s buildings, what was the state of mind of the tyrant? Only his closest and fanatical allies saw the collapse, none more so than Hitler’s servants, Otto Gunsche and Heinz Linge – two individuals which witnessed the final act of their regime. An act tinged over the last ten days in late April with selfish betrayal, increasingly forlorn hope, pleas, desperation and eventually suicide. As the Soviets closed in with impending vigour, in the concrete tomb below ground and under the thunderous booms of the petrifying battle for Berlin, the mind of the dictator disintegrated into drugs, delusion and a determination to die. Not by the enemy bullet but one of his own. This is the story of the people who held a unique place in world history – the ones who were there when the nightmare of Nazism and the horrors which accompanied it was finally banished as a dark chapter in the story of the human race.

Elementary Differential Equations


Earl D. Rainville - 1962
    Each chapter includes many illustrative examples to assist the reader. The book emphasizes methods for finding solutions to differential equations. It provides many abundant exercises, applications, and solved examples with careful attention given to readability. Elementary Differential Equations includes a thorough treatment of power series techniques. In addition, the book presents a classical treatment of several physical problems to show how Fourier series become involved in the solution of those problems. The eighth edition of Elementary Differential Equations has been revised to include a new supplement in many chapters that provides suggestions and exercises for using a computer to assist in the understanding of the material in the chapter. It also now provides an introduction to the phase plane and to different types of phase portraits. A valuable reference book for readers interested in exploring the technological and other applications of differential equations.

Computer Science Illuminated


Nell B. Dale - 2002
    Written By Two Of Today'S Most Respected Computer Science Educators, Nell Dale And John Lewis, The Text Provides A Broad Overview Of The Many Aspects Of The Discipline From A Generic View Point. Separate Program Language Chapters Are Available As Bundle Items For Those Instructors Who Would Like To Explore A Particular Programming Language With Their Students. The Many Layers Of Computing Are Thoroughly Explained Beginning With The Information Layer, Working Through The Hardware, Programming, Operating Systems, Application, And Communication Layers, And Ending With A Discussion On The Limitations Of Computing. Perfect For Introductory Computing And Computer Science Courses, Computer Science Illuminated, Third Edition's Thorough Presentation Of Computing Systems Provides Computer Science Majors With A Solid Foundation For Further Study, And Offers Non-Majors A Comprehensive And Complete Introduction To Computing.

Quantum Physics for Beginners: From Wave Theory to Quantum Computing. Understanding How Everything Works by a Simplified Explanation of Quantum Physics and Mechanics Principles


Carl J. Pratt - 2021
    

New SYLLABUS Mathematics 3; 6th Edition


Teh Keng Seng
    

Mathematics


Keith Devlin - 1988
    A modern classic by an accomplished mathematician and best-selling author has been updated to encompass and explain the recent headline-making advances in the field in non-technical terms.

Linear Algebra


Kenneth M. Hoffman - 1971
    Linear Equations; Vector Spaces; Linear Transformations; Polynomials; Determinants; Elementary canonical Forms; Rational and Jordan Forms; Inner Product Spaces; Operators on Inner Product Spaces; Bilinear Forms For all readers interested in linear algebra.

The Grasshopper King


Jordan Ellenberg - 2003
    Now that its basketball program has fallen apart, CSU’s only claim to fame is its Gravinics Department, dedicated to the study of an obscure European country—its mythology, its extraordinarily difficult language, and especially its bizarre star poet, Henderson.Having discovered Henderson’s poetry in a trash bin, Stanley Higgs becomes the foremost scholar of the poet’s work, accepts a position at Chandler State University, achieves international academic fame, marries the Dean’s daughter, and abruptly stops talking. With all of academia convinced that Higgs is formulating a great truth, the university employs Orwellian techniques to record Higgs’s every potential utterance and to save its reputation. A feckless Gravinics language student, Samuel Grapearbor, together with his long-suffering girlfriend Julia, is hired to monitor Higgs during the day. Over endless games of checkers and shared sandwiches, a uniquely silent friendship develops. As one man struggles to grow up and the other grows old, The Grasshopper King, in all of his glory, emerges.In this debut novel about treachery, death, academia, marriage, mythology, history, and truly horrible poetry, Jordan Ellenberg creates a world complete with its own geography, obscene folklore, and absurdly endearing -characters—a world where arcane subjects flourish and the smallest swerve from convention can result in -immortality.Jordan Ellenberg was born in Potomac, Maryland in 1971. His brilliance as a mathematical prodigy led to a feature in The National Enquirer, an interview with Charlie Rose on CBS’s Nightwatch, and gold medals at the Math Olympiad in Cuba and Germany. He is now an Assistant Professor of Math at Princeton University and his column, "Do the Math," appears regularly in the online journal Slate. This is his first novel.

The Art of Mathematics


Jerry P. King - 1992
    Jerry King is no exception. His informal, nontechnical book, as its title implies, is organized around what Bertrand Russell called the 'supreme beauty' of mathematics--a beauty 'capable of a stern perfection such as only the greatest art can show.'NATUREIn this clear, concise, and superbly written volume, mathematics professor and poet Jerry P. King reveals the beauty that is at the heart of mathematics--and he makes that beauty accessible to all readers. Darting wittily from Euclid to Yeats, from Poincare to Rembrandt, from axioms to symphonies, THE ART OF MATHEMATICS explores the difference between real, rational, and complex numbers; analyzes the intellectual underpinnings of pure and applied mathematics; and reveals the fundamental connection between aesthetics and mathematics. King also sheds light on how mathematicians pursue their research and how our educational system perpetuates the damaging divisions between the two cultures.

Linear Algebra


Georgi E. Shilov - 1971
    Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.

In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation


William J. Cook - 2011
    In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.