Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development


Craig Larman - 2000
    Building on two widely acclaimed previous editions, Craig Larman has updated this book to fully reflect the new UML 2 standard, to help you master the art of object design, and to promote high-impact, iterative, and skillful agile modeling practices.Developers and students will learn object-oriented analysis and design (OOA/D) through three iterations of two cohesive, start-to-finish case studies. These case studies incrementally introduce key skills, essential OO principles and patterns, UML notation, and best practices. You won’t just learn UML diagrams - you’ll learn how to apply UML in the context of OO software development.Drawing on his unsurpassed experience as a mentor and consultant, Larman helps you understand evolutionary requirements and use cases, domain object modeling, responsibility-driven design, essential OO design, layered architectures, “Gang of Four” design patterns, GRASP, iterative methods, an agile approach to the Unified Process (UP), and much more. This edition’s extensive improvements include:- A stronger focus on helping you master OOA/D through case studies that demonstrate key OO principles and patterns, while also applying the UML- New coverage of UML 2, Agile Modeling, Test-Driven Development, and refactoring- Many new tips on combining iterative and evolutionary development with OOA/D- Updates for easier study, including new learning aids and graphics- New college educator teaching resources- Guidance on applying the UP in a light, agile spirit, complementary with other iterative methods such as XP and Scrum- Techniques for applying the UML to documenting architectures- A new chapter on evolutionary requirements, and much moreApplying UML and Patterns, Third Edition, is a lucid and practical introduction to thinking and designing with objects - and creating systems that are well crafted, robust, and maintainable.

Release It!: Design and Deploy Production-Ready Software (Pragmatic Programmers)


Michael T. Nygard - 2007
    Did you design your system to survivef a sudden rush of visitors from Digg or Slashdot? Or an influx of real world customers from 100 different countries? Are you ready for a world filled with flakey networks, tangled databases, and impatient users?If you're a developer and don't want to be on call for 3AM for the rest of your life, this book will help.In Release It!, Michael T. Nygard shows you how to design and architect your application for the harsh realities it will face. You'll learn how to design your application for maximum uptime, performance, and return on investment.Mike explains that many problems with systems today start with the design.

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design


Michael J. Hernandez - 1996
    You d be up to your neck in normal forms before you even had a chance to wade. When Michael J. Hernandez needed a database design book to teach mere mortals like himself, there were none. So he began a personal quest to learn enough to write one. And he did.Now in its Second Edition, Database Design for Mere Mortals is a miracle for today s generation of database users who don t have the background -- or the time -- to learn database design the hard way. It s also a secret pleasure for working pros who are occasionally still trying to figure out what they were taught.Drawing on 13 years of database teaching experience, Hernandez has organized database design into several key principles that are surprisingly easy to understand and remember. He illuminates those principles using examples that are generic enough to help you with virtually any application.Hernandez s goals are simple. You ll learn how to create a sound database structure as easily as possible. You ll learn how to optimize your structure for efficiency and data integrity. You ll learn how to avoid problems like missing, incorrect, mismatched, or inaccurate data. You ll learn how to relate tables together to make it possible to get whatever answers you need in the future -- even if you haven t thought of the questions yet.If -- as is often the case -- you already have a database, Hernandez explains how to analyze it -- and leverage it. You ll learn how to identify new information requirements, determine new business rules that need to be applied, and apply them.Hernandez starts with an introduction to databases, relational databases, and the idea and objectives of database design. Next, you ll walk through the key elements of the database design process: establishing table structures and relationships, assigning primary keys, setting field specifications, and setting up views. Hernandez s extensive coverage of data integrity includes a full chapter on establishing business rules and using validation tables.Hernandez surveys bad design techniques in a chapter on what not to do -- and finally, helps you identify those rare instances when it makes sense to bend or even break the conventional rules of database design.There s plenty that s new in this edition. Hernandez has gone over his text and illustrations with a fine-tooth comb to improve their already impressive clarity. You ll find updates to reflect new advances in technology, including web database applications. There are expanded and improved discussions of nulls and many-to-many relationships; multivalued fields; primary keys; and SQL data type fields. There s a new Quick Reference database design flowchart. A new glossary. New review questions at the end of every chapter.Finally, it s worth mentioning what this book isn t. It isn t a guide to any specific database platform -- so you can use it whether you re running Access, SQL Server, or Oracle, MySQL or PostgreSQL. And it isn t an SQL guide. (If that s what you need, Michael J. Hernandez has also coauthored the superb SQL Queries for Mere Mortals). But if database design is what you need to learn, this book s worth its weight in gold. Bill CamardaBill Camarda is a consultant, writer, and web/multimedia content developer. His 15 books include Special Edition Using Word 2000 and Upgrading & Fixing Networks for Dummies, Second Edition.

Structured Computer Organization


Andrew S. Tanenbaum - 1976
    The operation of a typical IBM PC clone is now described in detail at the chip level.

Microservice Patterns


Chris Richardson - 2017
    However, successful applications have a habit of growing. Eventually the development team ends up in what is known as monolithic hell. All aspects of software development and deployment become painfully slow. The solution is to adopt the microservice architecture, which structures an application as a services, organized around business capabilities. This architecture accelerates software development and enables continuous delivery and deployment of complex software applications.Microservice Patterns teaches enterprise developers and architects how to build applications with the microservice architecture. Rather than simply advocating for the use the microservice architecture, this clearly-written guide takes a balanced, pragmatic approach. You'll discover that the microservice architecture is not a silver bullet and has both benefits and drawbacks. Along the way, you'll learn a pattern language that will enable you to solve the issues that arise when using the microservice architecture. This book also teaches you how to refactor a monolithic application to a microservice architecture.

AWS Lambda: A Guide to Serverless Microservices


Matthew Fuller - 2016
    Lambda enables users to develop code that executes in response to events - API calls, file uploads, schedules, etc - and upload it without worrying about managing traditional server metrics such as disk space, memory, or CPU usage. With its "per execution" cost model, Lambda can enable organizations to save hundreds or thousands of dollars on computing costs. With in-depth walkthroughs, large screenshots, and complete code samples, the reader is guided through the step-by-step process of creating new functions, responding to infrastructure events, developing API backends, executing code at specified intervals, and much more. Introduction to AWS Computing Evolution of the Computing Workload Lambda Background The Internals The Basics Functions Languages Resource Allocation Getting Set Up Hello World Uploading the Function Working with Events AWS Events Custom Events The Context Object Properties Methods Roles and Permissions Policies Trust Relationships Console Popups Cross Account Access Dependencies and Resources Node Modules OS Dependencies OS Resources OS Commands Logging Searching Logs Testing Your Function Lambda Console Tests Third-Party Testing Libraries Simulating Context Hello S3 Object The Bucket The Role The Code The Event The Trigger Testing When Lambda Isn’t the Answer Host Access Fine-Tuned Configuration Security Long-Running Tasks Where Lambda Excels AWS Event-Driven Tasks Scheduled Events (Cron) Offloading Heavy Processing API Endpoints Infrequently Used Services Real-World Use Cases S3 Image Processing Shutting Down Untagged Instances Triggering CodeDeploy with New S3 Uploads Processing Inbound Email Enforcing Security Policies Detecting Expiring Certificates Utilizing the AWS API Execution Environment The Code Pipeline Cold vs. Hot Execution What is Saved in Memory Scaling and Container Reuse From Development to Deployment Application Design Development Patterns Testing Deployment Monitoring Versioning and Aliasing Costs Short Executions Long-Running Processes High-Memory Applications Free Tier Calculating Pricing CloudFormation Reusable Template with Minimum Permissions Cross Account Access CloudWatch Alerts AWS API Gateway API Gateway Event Creating the Lambda Function Creating a New API, Resource, and Method Initial Configuration Mapping Templates Adding a Query String Using HTTP Request Information Within Lambda Deploying the API Additional Use Cases Lambda Competitors Iron.io StackHut WebTask.io Existing Cloud Providers The Future of Lambda More Resources Conclusion

Architecture Patterns with Python: Enabling Test-Driven Development, Domain-Driven Design, and Event-Driven Microservices


Harry Percival - 2020
    Many Python developers are now taking an interest in high-level software architecture patterns such as hexagonal/clean architecture, event-driven architecture, and strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn't always straightforward.With this practical guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity. Each pattern is illustrated with concrete examples in idiomatic Python that explain how to avoid some of the unnecessary verbosity of Java and C# syntax. You'll learn how to implement each of these patterns in a Pythonic way.Architectural design patterns include:Dependency inversion, and its links to ports and adapters (hexagonal/clean architecture)Domain-driven design's distinction between entities, value objects, and aggregatesRepository and Unit of Work patterns for persistent storageEvents, commands, and the message busCommand Query Responsibility Segregation (CQRS)Event-driven architecture and reactive microservices

Practical Vim: Edit Text at the Speed of Thought


Drew Neil - 2012
    It's available on almost every OS--if you master the techniques in this book, you'll never need another text editor. Practical Vim shows you 120 vim recipes so you can quickly learn the editor's core functionality and tackle your trickiest editing and writing tasks. Vim, like its classic ancestor vi, is a serious tool for programmers, web developers, and sysadmins. No other text editor comes close to Vim for speed and efficiency; it runs on almost every system imaginable and supports most coding and markup languages. Learn how to edit text the "Vim way:" complete a series of repetitive changes with The Dot Formula, using one keystroke to strike the target, followed by one keystroke to execute the change. Automate complex tasks by recording your keystrokes as a macro. Run the same command on a selection of lines, or a set of files. Discover the "very magic" switch, which makes Vim's regular expression syntax more like Perl's. Build complex patterns by iterating on your search history. Search inside multiple files, then run Vim's substitute command on the result set for a project-wide search and replace. All without installing a single plugin! You'll learn how to navigate text documents as fast as the eye moves--with only a few keystrokes. Jump from a method call to its definition with a single command. Use Vim's jumplist, so that you can always follow the breadcrumb trail back to the file you were working on before. Discover a multilingual spell-checker that does what it's told.Practical Vim will show you new ways to work with Vim more efficiently, whether you're a beginner or an intermediate Vim user. All this, without having to touch the mouse.What You Need: Vim version 7

Thinking in Java


Bruce Eckel - 1998
    The author's take on the essence of Java as a new programming language and the thorough introduction to Java's features make this a worthwhile tutorial. Thinking in Java begins a little esoterically, with the author's reflections on why Java is new and better. (This book's choice of font for chapter headings is remarkably hard on the eyes.) The author outlines his thoughts on why Java will make you a better programmer, without all the complexity. The book is better when he presents actual language features. There's a tutorial to basic Java types, keywords, and operators. The guide includes extensive source code that is sometimes daunting (as with the author's sample code for all the Java operators in one listing.) As such, this text will be most useful for the experienced developer. The text then moves on to class design issues, when to use inheritance and composition, and related topics of information hiding and polymorphism. (The treatment of inner classes and scoping will likely seem a bit overdone for most readers.) The chapter on Java collection classes for both Java Developer's Kit (JDK) 1.1 and the new classes, such as sets, lists, and maps, are much better. There's material in this chapter that you are unlikely to find anywhere else. Chapters on exception handling and programming with type information are also worthwhile, as are the chapters on the new Swing interface classes and network programming. Although it adopts somewhat of a mixed-bag approach, Thinking in Java contains some excellent material for the object-oriented developer who wants to see what all the fuss is about with Java.

Software Engineering at Google: Lessons Learned from Programming Over Time


Titus Winters - 2020
    With this book, you'll get a candid and insightful look at how software is constructed and maintained by some of the world's leading practitioners.Titus Winters, Tom Manshreck, and Hyrum K. Wright, software engineers and a technical writer at Google, reframe how software engineering is practiced and taught: from an emphasis on programming to an emphasis on software engineering, which roughly translates to programming over time.You'll learn:Fundamental differences between software engineering and programmingHow an organization effectively manages a living codebase and efficiently responds to inevitable changeWhy culture (and recognizing it) is important, and how processes, practices, and tools come into play

Mastering Algorithms with C


Kyle Loudon - 1999
    Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms

Designing Web APIs: Building APIs That Developers Love


Brenda Jin - 2018
    But building a popular API with a thriving developer ecosystem is also one of the most challenging. With this practical guide, developers, architects, and tech leads will learn how to navigate complex decisions for designing, scaling, marketing, and evolving interoperable APIs.Authors Brenda Jin, Saurabh Sahni, and Amir Shevat explain API design theory and provide hands-on exercises for building your web API and managing its operation in production. You'll also learn how to build and maintain a following of app developers. This book includes expert advice, worksheets, checklists, and case studies from companies including Slack, Stripe, Facebook, Microsoft, Cloudinary, Oracle, and GitHub.Get an overview of request-response and event-driven API design paradigmsLearn best practices for designing an API that meets the needs of your usersUse a template to create an API design processScale your web API to support a growing number of API calls and use casesRegularly adapt the API to reflect changes to your product or businessProvide developer resources that include API documentation, samples, and tools

Seven Languages in Seven Weeks


Bruce A. Tate - 2010
    But if one per year is good, how about Seven Languages in Seven Weeks? In this book you'll get a hands-on tour of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby. Whether or not your favorite language is on that list, you'll broaden your perspective of programming by examining these languages side-by-side. You'll learn something new from each, and best of all, you'll learn how to learn a language quickly. Ruby, Io, Prolog, Scala, Erlang, Clojure, Haskell. With Seven Languages in Seven Weeks, by Bruce A. Tate, you'll go beyond the syntax-and beyond the 20-minute tutorial you'll find someplace online. This book has an audacious goal: to present a meaningful exploration of seven languages within a single book. Rather than serve as a complete reference or installation guide, Seven Languages hits what's essential and unique about each language. Moreover, this approach will help teach you how to grok new languages. For each language, you'll solve a nontrivial problem, using techniques that show off the language's most important features. As the book proceeds, you'll discover the strengths and weaknesses of the languages, while dissecting the process of learning languages quickly--for example, finding the typing and programming models, decision structures, and how you interact with them. Among this group of seven, you'll explore the most critical programming models of our time. Learn the dynamic typing that makes Ruby, Python, and Perl so flexible and compelling. Understand the underlying prototype system that's at the heart of JavaScript. See how pattern matching in Prolog shaped the development of Scala and Erlang. Discover how pure functional programming in Haskell is different from the Lisp family of languages, including Clojure. Explore the concurrency techniques that are quickly becoming the backbone of a new generation of Internet applications. Find out how to use Erlang's let-it-crash philosophy for building fault-tolerant systems. Understand the actor model that drives concurrency design in Io and Scala. Learn how Clojure uses versioning to solve some of the most difficult concurrency problems. It's all here, all in one place. Use the concepts from one language to find creative solutions in another-or discover a language that may become one of your favorites.