How the Universe Got Its Spots: Diary of a Finite Time in a Finite Space


Janna Levin - 2002
    For even as she sets out to determine how big “really big” may be, Levin gives us an intimate look at the day-to-day life of a globe-trotting physicist, complete with jet lag and romantic disturbances.Nimbly synthesizing geometry, topology, chaos and string theories, Levin shows how the pattern of hot and cold spots left over from the big bang may one day reveal the size and shape of the cosmos. She does so with such originality, lucidity—and even poetry—that How the Universe Got Its Spots becomes a thrilling and deeply personal communication between a scientist and the lay reader.

Humble Pi: A Comedy of Maths Errors


Matt Parker - 2019
    Most of the time this math works quietly behind the scenes . . . until it doesn't. All sorts of seemingly innocuous mathematical mistakes can have significant consequences.Math is easy to ignore until a misplaced decimal point upends the stock market, a unit conversion error causes a plane to crash, or someone divides by zero and stalls a battleship in the middle of the ocean.Exploring and explaining a litany of glitches, near misses, and mathematical mishaps involving the internet, big data, elections, street signs, lotteries, the Roman Empire, and an Olympic team, Matt Parker uncovers the bizarre ways math trips us up, and what this reveals about its essential place in our world. Getting it wrong has never been more fun.

The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics


Marcus du Sautoy - 2003
    The subject was the mystery of prime numbers. At the heart of the presentation was an idea that Riemann had not yet proved but one that baffles mathematicians to this day.Solving the Riemann Hypothesis could change the way we do business, since prime numbers are the lynchpin for security in banking and e-commerce. It would also have a profound impact on the cutting-edge of science, affecting quantum mechanics, chaos theory, and the future of computing. Leaders in math and science are trying to crack the elusive code, and a prize of $1 million has been offered to the winner. In this engaging book, Marcus du Sautoy reveals the extraordinary history behind the holy grail of mathematics and the ongoing quest to capture it.

Innumeracy: Mathematical Illiteracy and Its Consequences


John Allen Paulos - 1988
    Dozens of examples in innumeracy show us how it affects not only personal economics and travel plans, but explains mis-chosen mates, inappropriate drug-testing, and the allure of pseudo-science.

The Canon: A Whirligig Tour of the Beautiful Basics of Science


Natalie Angier - 2007
    She draws on conversations with hundreds of the world's top scientists and on her own work as a Pulitzer Prize-winning writer for the New York Times to create a thoroughly entertaining guide to scientific literacy. Angier's gifts are on full display in The Canon, an ebullient celebration of science that stands to become a classic. The Canon is vital reading for anyone who wants to understand the great issues of our time -- from stem cells and bird flu to evolution and global warming. And it's for every parent who has ever panicked when a child asked how the earth was formed or what electricity is. Angier's sparkling prose and memorable metaphors bring the science to life, reigniting our own childhood delight in discovering how the world works. "Of course you should know about science," writes Angier, "for the same reason Dr. Seuss counsels his readers to sing with a Ying or play Ring the Gack: These things are fun and fun is good." The Canon is a joyride through the major scientific disciplines: physics, chemistry, biology, geology, and astronomy. Along the way, we learn what is actually happening when our ice cream melts or our coffee gets cold, what our liver cells do when we eat a caramel, why the horse is an example of evolution at work, and how we're all really made of stardust. It's Lewis Carroll meets Lewis Thomas -- a book that will enrapture, inspire, and enlighten.

Our Mathematical Universe: My Quest for the Ultimate Nature of Reality


Max Tegmark - 2012
    Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index

The Millennium Problems


Keith Devlin - 2002
    For mathematicians, physicists, engineers, and everyone else with an interest in mathematics' cutting edge, The Millennium Problems is the definitive account of a subject that will have a very long shelf life.

How Not to Be Wrong: The Power of Mathematical Thinking


Jordan Ellenberg - 2014
    In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

Math Riddles For Smart Kids: Math Riddles and Brain Teasers that Kids and Families will Love


M. Prefontaine - 2017
    It is a collection of 150 brain teasing math riddles and puzzles. Their purpose is to make children think and stretch the mind. They are designed to test logic, lateral thinking as well as memory and to engage the brain in seeing patterns and connections between different things and circumstances. They are laid out in three chapters which get more difficult as you go through the book, in the author’s opinion at least. The answers are at the back of the book if all else fails. These are more difficult riddles and are designed to be attempted by children from 10 years onwards, as well as participation from the rest of the family. Tags: Riddles and brain teasers, riddles and trick questions, riddles book, riddles book for kids, riddles for kids, riddles for kids aged 9-12, riddles and puzzles, jokes and riddles, jokes book, jokes book for kids, jokes children, jokes for kids, jokes kids, puzzle book

Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics


John Derbyshire - 2003
    Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.

The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth


Paul Hoffman - 1998
    Based on a National Magazine Award-winning article, this masterful biography of Hungarian-born Paul Erdos is both a vivid portrait of an eccentric genius and a layman's guide to some of this century's most startling mathematical discoveries.

Paradox: The Nine Greatest Enigmas in Physics


Jim Al-Khalili - 2012
    A fun and fascinating look at great scientific paradoxes.   Throughout history, scientists have come up with theories and ideas that just don't seem to make sense.  These we call paradoxes.  The paradoxes Al-Khalili offers are drawn chiefly from physics and astronomy and represent those that have stumped some of the finest minds.  For example, how can a cat be both dead and alive at the same time?  Why will Achilles never beat a tortoise in a race, no matter how fast he runs?  And how can a person be ten years older than his twin?   With elegant explanations that bring the reader inside the mind of those who've developed them, Al-Khalili helps us to see that, in fact, paradoxes can be solved if seen from the right angle.  Just as surely as Al-Khalili narrates the enduring fascination of these classic paradoxes, he reveals their underlying logic.  In doing so, he brings to life a select group of the most exciting concepts in human knowledge.  Paradox is mind-expanding fun.

The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy


Sharon Bertsch McGrayne - 2011
    To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.

How to Think Like a Mathematician


Kevin Houston - 2009
    Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

The Perfect Theory: A Century of Geniuses and the Battle over General Relativity


Pedro G. Ferreira - 2014
    Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdained in 1950s America. Even today, PhD students are warned that specializing in general relativity will make them unemployable. Despite these pitfalls, general relativity has flourished, delivering key insights into our understanding of the origin of time and the evolution of all the stars and galaxies in the cosmos. Its adherents have revealed what lies at the farthest reaches of the universe, shed light on the smallest scales of existence, and explained how the fabric of reality emerges. Dark matter, dark energy, black holes, and string theory are all progeny of Einstein’s theory. We are in the midst of a momentous transformation in modern physics. As scientists look farther and more clearly into space than ever before, The Perfect Theory reveals the greater relevance of general relativity, showing us where it started, where it has led, and where it can still take us.