Book picks similar to
The Principles of Mathematics by Bertrand Russell
philosophy
mathematics
math
science
On the Plurality of Worlds
David Kellogg Lewis - 1985
Lewis argues that the philosophical utility of modal realism is a good reason for believing that it is true.
Meta Math!: The Quest for Omega
Gregory Chaitin - 2005
His investigations shed light on what we can ultimately know about the universe and the very nature of life. In an infectious and enthusiastic narrative, Chaitin delineates the specific intellectual and intuitive steps he took toward the discovery. He takes us to the very frontiers of scientific thinking, and helps us to appreciate the art—and the sheer beauty—in the science of math.
Logicomix: An Epic Search for Truth
Apostolos Doxiadis - 2009
This graphic novel recounts the spiritual odyssey of philosopher Bertrand Russell. In his agonized search for absolute truth, he crosses paths with thinkers like Gottlob Frege, David Hilbert & Kurt Gödel, & finds a passionate student in Ludwig Wittgenstein. But his most ambitious goal—to establish unshakable logical foundations of mathematics—continues to loom before him. Thru love & hate, peace & war, he persists in the mission threatening to claim both his career & happiness, finally driving him to the brink of insanity. This story is at the same time a historical novel & an accessible explication of some of the biggest ideas of mathematics & modern philosophy. With rich characterizations & atmospheric artwork, it spins the pursuit of such ideas into a satisfying tale. Probing, layered, the book throws light on Russell’s inner struggles while setting them in the context of the timeless questions he tried to answer. At its heart, Logicomix is a story about the conflict between ideal rationality & the flawed fabric of reality.
A History of π
Petr Beckmann - 1970
Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.
Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge
William Poundstone - 1988
This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.
Five Equations That Changed the World
Michael Guillen - 1995
Michael Guillen, known to millions as the science editor of ABC's Good Morning America, tells the fascinating stories behind five mathematical equations. As a regular contributor to daytime's most popular morning news show and an instructor at Harvard University, Dr. Michael Guillen has earned the respect of millions as a clear and entertaining guide to the exhilarating world of science and mathematics. Now Dr. Guillen unravels the equations that have led to the inventions and events that characterize the modern world, one of which -- Albert Einstein's famous energy equation, E=mc2 -- enabled the creation of the nuclear bomb. Also revealed are the mathematical foundations for the moon landing, airplane travel, the electric generator -- and even life itself. Praised by Publishers Weekly as "a wholly accessible, beautifully written exploration of the potent mathematical imagination," and named a Best Nonfiction Book of 1995, the stories behind The Five Equations That Changed the World, as told by Dr. Guillen, are not only chronicles of science, but also gripping dramas of jealousy, fame, war, and discovery. Dr. Michael Guillen is Instructor of Physics and Mathematics in the Core Curriculum Program at Harvard University.
What Is Life? with Mind and Matter and Autobiographical Sketches
Erwin Schrödinger - 1944
The book was based on a course of public lectures delivered by Schrödinger in February 1943 at Trinity College, Dublin. Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?" In the book, Schrödinger introduced the idea of an "aperiodic crystal" that contained genetic information in its configuration of covalent chemical bonds. In the 1950s, this idea stimulated enthusiasm for discovering the genetic molecule and would give both Francis Crick and James Watson initial inspiration in their research.
A Beginner's Guide to Constructing the Universe: The Mathematical Archetypes of Nature, Art, and Science
Michael S. Schneider - 1994
This is a new view of mathematics, not the one we learned at school but a comprehensive guide to the patterns that recur through the universe and underlie human affairs. A Beginner's Guide to Constructing, the Universe shows you: Why cans, pizza, and manhole covers are round.Why one and two weren't considered numbers by the ancient Greeks.Why squares show up so often in goddess art and board games.What property makes the spiral the most widespread shape in nature, from embryos and hair curls to hurricanes and galaxies. How the human body shares the design of a bean plant and the solar system. How a snowflake is like Stonehenge, and a beehive like a calendar. How our ten fingers hold the secrets of both a lobster a cathedral, and much more.
The Logic of Scientific Discovery
Karl Popper - 1934
It remains the one of the most widely read books about science to come out of the twentieth century.(Note: the book was first published in 1934, in German, with the title Logik der Forschung. It was "reformulated" into English in 1959. See Wikipedia for details.)
Mathematics and the Imagination
Edward Kasner - 1940
But your pleasure and prowess at games, gambling, and other numerically related pursuits can be heightened with this entertaining volume, in which the authors offer a fascinating view of some of the lesser-known and more imaginative aspects of mathematics.A brief and breezy explanation of the new language of mathematics precedes a smorgasbord of such thought-provoking subjects as the googolplex (the largest definite number anyone has yet bothered to conceive of); assorted geometries — plane and fancy; famous puzzles that made mathematical history; and tantalizing paradoxes. Gamblers receive fair warning on the laws of chance; a look at rubber-sheet geometry twists circles into loops without sacrificing certain important properties; and an exploration of the mathematics of change and growth shows how calculus, among its other uses, helps trace the path of falling bombs.Written with wit and clarity for the intelligent reader who has taken high school and perhaps college math, this volume deftly progresses from simple arithmetic to calculus and non-Euclidean geometry. It “lives up to its title in every way [and] might well have been merely terrifying, whereas it proves to be both charming and exciting." — Saturday Review of Literature.
The Mathematical Experience
Philip J. Davis - 1980
This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.
Science of Logic
Georg Wilhelm Friedrich Hegel - 1812
Most of the major schools of contemporary philosophy, from Marxism to Existentialism, are reactions to Hegelianism and all, if they are to be understood, require some understanding of Hegel's Science of Logic.
Thinking about Mathematics: The Philosophy of Mathematics
Stewart Shapiro - 2000
Part I describes questions and issues about mathematics that have motivated philosophers since the beginning of intellectual history. Part II is an historical survey, discussing the role of mathematics in the thought of such philosophers as Plato, Aristotle, Kant, and Mill. Part III covers the three major positions held throughout the twentieth century: the idea that mathematics is logic (logicism), the view that the essence of mathematics is the rule-governed manipulation of characters (formalism), and a revisionist philosophy that focuses on the mental activity of mathematics (intuitionism). Finally, Part IV brings the reader up-to-date with a look at contemporary developments within the discipline.This sweeping introductory guide to the philosophy of mathematics makes these fascinating concepts accessible to those with little background in either mathematics or philosophy.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Introduction to Logic
Irving M. Copi - 1953
Many new exercises introduced in this edition help supplement and support explanations, aid in review, and make the book visually stimulating. This edition also includes a revised Logic tutorial on CD-Rom--further simplifying the study of logic. Includes many fascinating illustrations taken from the history of science as well as from contemporary research in the physical and biological sciences, plus introduces an abundance of new exercises throughout, complete with solutions for the first exercise in a set. Appropriate for those in business, education, political, or psychology careers.