The Geometry of René Descartes: with a Facsimile of the First Edition


René Descartes - 1637
    Originally published in 1637, it has been characterized as "the greatest single step ever made in the progress of the exact sciences" (John Stuart Mill); as a book which "remade geometry and made modern geometry possible" (Eric Temple Bell). It "revolutionized the entire conception of the object of mathematical science" (J. Hadamard).With this volume Descartes founded modern analytical geometry. Reducing geometry to algebra and analysis and, conversely, showing that analysis may be translated into geometry, it opened the way for modern mathematics. Descartes was the first to classify curves systematically and to demonstrate algebraic solution of geometric curves. His geometric interpretation of negative quantities led to later concepts of continuity and the theory of function. The third book contains important contributions to the theory of equations.This edition contains the entire definitive Smith-Latham translation of Descartes' three books: Problems the Construction of which Requires Only Straight Lines and Circles; On the Nature of Curved Lines; and On the Construction of Solid and Supersolid Problems. Interleaved page by page with the translation is a complete facsimile of the 1637 French text, together with all Descartes' original illustrations; 248 footnotes explain the text and add further bibliography.

Two New Sciences: Including Centers Of Gravity And Force Of Percussion


Galileo Galilei - 1638
    His public advocacy of the Copernican over the Aristotelian system of the universe flew directly in the face of biblical authority and ecclesiastical tradition. Condemned and placed under house arrest by the Inquisition, Galileo nonetheless devoted his last years to the completion of his Dialogues Concerning Two New Sciences, which deals with motion and the resistance of solids. The Two New Sciences, which Galileo called his most important work, may be regarded as the summary statement of a life devoted to scientific experimentation and free inquiry untrammeled by tradition and authority.

Elements of Chemistry


Antoine Lavoisier - 1789
    First explicit statement of law of conservation of matter in chemical change; first modern list of chemical elements; more. Facsimile reprint of original (1790) Kerr translation. Introduction by Professor Douglas McKie.Introduction1 Of the formation & decomposition of aeriform fluids, of the combustion of simple bodies & the formation of acids 2 Of the combination of acids with salifiable bases & of the formation of neutral salts3 Description of the instruments & operations of chemistryAppendix

The Principia: Mathematical Principles of Natural Philosophy


Isaac Newton - 1687
    Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.The illuminating Guide to the Principia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.

The Principles of Mathematics


Bertrand Russell - 1903
    Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.

Euclid's Elements


Euclid
    Heath's translation of the thirteen books of Euclid's Elements. In keeping with Green Lion's design commitment, diagrams have been placed on every spread for convenient reference while working through the proofs; running heads on every page indicate both Euclid's book number and proposition numbers for that page; and adequate space for notes is allowed between propositions and around diagrams. The all-new index has built into it a glossary of Euclid's Greek terms.Heath's translation has stood the test of time, and, as one done by a renowned scholar of ancient mathematics, it can be relied upon not to have inadvertantly introduced modern concepts or nomenclature. We have excised the voluminous historical and scholarly commentary that swells the Dover edition to three volumes and impedes classroom use of the original text. The single volume is not only more convenient, but less expensive as well.

The New Organon


Francis Bacon - 1620
    It challenged the entire edifice of the philosophy and learning of Bacon's time, and left its mark on all subsequent discussions of scientific method. This volume presents a new translation of the text into modern English by Michael Silverthorne, together with an introduction by Lisa Jardine that sets the work in the context of Bacon's scientific and philosophical activities.

Physics


Aristotle
    Now, in the first translation into English since 1930, Aristotle's thought is presented accurately, with a lucid introduction and extensive notes to explain the general structure of each section of the book, and shed light on particular problems. It simplifies and expands the style of the original, making for easier reading and better comprehension.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number


Gottlob Frege - 1884
    The book represents the first philosophically sound discussion of the concept of number in Western civilization. It profoundly influenced developments in the philosophy of mathematics and in general ontology.

A Mathematician's Apology


G.H. Hardy - 1940
    H. Hardy was one of this century's finest mathematical thinkers, renowned among his contemporaries as a 'real mathematician ... the purest of the pure'. He was also, as C. P. Snow recounts in his Foreword, 'unorthodox, eccentric, radical, ready to talk about anything'. This 'apology', written in 1940 as his mathematical powers were declining, offers a brilliant and engaging account of mathematics as very much more than a science; when it was first published, Graham Greene hailed it alongside Henry James's notebooks as 'the best account of what it was like to be a creative artist'. C. P. Snow's Foreword gives sympathetic and witty insights into Hardy's life, with its rich store of anecdotes concerning his collaboration with the brilliant Indian mathematician Ramanujan, his aphorisms and idiosyncrasies, and his passion for cricket. This is a unique account of the fascination of mathematics and of one of its most compelling exponents in modern times.

Mathematics for the Nonmathematician


Morris Kline - 1967
    But there is one other motive which is as strong as any of these — the search for beauty. Mathematics is an art, and as such affords the pleasures which all the arts afford." In this erudite, entertaining college-level text, Morris Kline, Professor Emeritus of Mathematics at New York University, provides the liberal arts student with a detailed treatment of mathematics in a cultural and historical context. The book can also act as a self-study vehicle for advanced high school students and laymen. Professor Kline begins with an overview, tracing the development of mathematics to the ancient Greeks, and following its evolution through the Middle Ages and the Renaissance to the present day. Subsequent chapters focus on specific subject areas, such as "Logic and Mathematics," "Number: The Fundamental Concept," "Parametric Equations and Curvilinear Motion," "The Differential Calculus," and "The Theory of Probability." Each of these sections offers a step-by-step explanation of concepts and then tests the student's understanding with exercises and problems. At the same time, these concepts are linked to pure and applied science, engineering, philosophy, the social sciences or even the arts.In one section, Professor Kline discusses non-Euclidean geometry, ranking it with evolution as one of the "two concepts which have most profoundly revolutionized our intellectual development since the nineteenth century." His lucid treatment of this difficult subject starts in the 1800s with the pioneering work of Gauss, Lobachevsky, Bolyai and Riemann, and moves forward to the theory of relativity, explaining the mathematical, scientific and philosophical aspects of this pivotal breakthrough. Mathematics for the Nonmathematician exemplifies Morris Kline's rare ability to simplify complex subjects for the nonspecialist.

An Introduction to Mathematics


Alfred North Whitehead - 1958
    This distinguished little book is a brisk introduction to a series of mathematical concepts, a history of their development, and a concise summary of how today's reader may use them.

Lectures on the Foundations of Mathematics, Cambridge 1939


Ludwig Wittgenstein - 1989
    A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.

Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics


John Derbyshire - 2003
    Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world.