Hidden In Plain Sight 9: The Physics Of Consciousness


Andrew H. Thomas - 2018
    Can a computer think? Why is your consciousness like Bitcoin? Will there be an artificial intelligence apocalypse?

No bullshit guide to math and physics


Ivan Savov - 2010
    It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.

Infinity and the Mind: The Science and Philosophy of the Infinite


Rudy Rucker - 1981
    Rucker acquaints us with Godel's rotating universe, in which it is theoretically possible to travel into the past, and explains an interpretation of quantum mechanics in which billions of parallel worlds are produced every microsecond. It is in the realm of infinity, he maintains, that mathematics, science, and logic merge with the fantastic. By closely examining the paradoxes that arise from this merging, we can learn a great deal about the human mind, its powers, and its limitations.Using cartoons, puzzles, and quotations to enliven his text, Rucker guides us through such topics as the paradoxes of set theory, the possibilities of physical infinities, and the results of Godel's incompleteness theorems. His personal encounters with Godel the mathematician and philosopher provide a rare glimpse at genius and reveal what very few mathematicians have dared to admit: the transcendent implications of Platonic realism.

Solid State Physics: Structure and Properties of Materials


M.A. Wahab - 2005
    The First seven chapters deal with structure related aspects such as lattice and crystal structures, bonding, packing and diffusion of atoms followed by imperfections and lattice vibrations. Chapter eight deals mainly with experimental methods of determining structures of given materials. While the next nine chapters cover various physical properties of crystalline solids, the last chapter deals with the anisotropic properties of materials. This chapter has been added for benefit of readers to understand the crystal properties (anisotropic) in terms of some simple mathematical formulations such as tensor and matrix. New to the Second Edition: Chapter on: *Anisotropic Properties of Materials

From 0 to Infinity in 26 Centuries: The Extraordinary Story of Maths


Chris Waring - 2012
    Book by Waring, Chris

The Golden Ratio: The Divine Beauty of Mathematics


Gary B. Meisner - 2018
    This gorgeous book features clear, entertaining, and enlightening commentary alongside stunning full-color illustrations by Venezuelan artist and architect Rafael Araujo. From the pyramids of Giza, to quasicrystals, to the proportions of the human face, the golden ratio has an infinite capacity to generate shapes with exquisite properties.  With its lush format and layflat dimensions that closely approximate the golden ratio, this is the ultimate coffee table book for math enthusiasts, architects, designers, and fans of sacred geometry.

Shape: The Hidden Geometry of Information, Biology, Strategy, Democracy, and Everything Else


Jordan Ellenberg - 2021
    For real.If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel.Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry," from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.

Mathematics of Classical and Quantum Physics


Frederick W. Byron Jr. - 1969
    Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.

Differential Geometry


Erwin Kreyszig - 1991
    With problems and solutions. Includes 99 illustrations.

Challenge And Thrill Of Pre College Mathematics


V. Krishnamurthy - 2009
    It can urge the reader to explore new methodologies to have maximum fun with numbers, and opt for a higher course in mathematics. The book was specifically designed to help the student community, and develop a strong affinity towards problem solving.the book offers many complicated, and interesting challenges for the user, keeping them engaged throughout. A large number of solved problems are also included in challenge and thrill of pre-college mathematics, to give readers an insight into the subject. The book can be an eye-opener for school students of class 7 and above. The materials given in the book are powerful enough to help them develop a strong interest for the subject. The concepts are explained in a simple and comprehensive manner, providing them with a good understanding of mathematical fundamentals.what makes the book distinct is its detailed sections on geometry, that can improve the reasoning skills of students. There are also detailed accounts on algebra and trigonometry, enhancing the competitive ability of the users. The topics such as combinatorics, number theory, and probability are also explained in detail, in the book. Each chapter was designed with the intention of motivating students to appreciate the excitement that mathematical problems can provide. Published in 2003 by new age international publishers, the book is available in paperback. Key features: the book includes a collection of more than 300 solved numerical problems, compiled from various national, as well as international mathematical olympiads.it is widely recommended by students and teachers, alike as an essential preparatory book for those writing competitive examinations.

The Data Detective: Ten Easy Rules to Make Sense of Statistics


Tim Harford - 2020
    That’s a mistake, Tim Harford says in The Data Detective. We shouldn’t be suspicious of statistics—we need to understand what they mean and how they can improve our lives: they are, at heart, human behavior seen through the prism of numbers and are often “the only way of grasping much of what is going on around us.” If we can toss aside our fears and learn to approach them clearly—understanding how our own preconceptions lead us astray—statistics can point to ways we can live better and work smarter.As “perhaps the best popular economics writer in the world” (New Statesman), Tim Harford is an expert at taking complicated ideas and untangling them for millions of readers. In The Data Detective, he uses new research in science and psychology to set out ten strategies for using statistics to erase our biases and replace them with new ideas that use virtues like patience, curiosity, and good sense to better understand ourselves and the world. As a result, The Data Detective is a big-idea book about statistics and human behavior that is fresh, unexpected, and insightful.

Gödel, Escher, Bach: An Eternal Golden Braid


Douglas R. Hofstadter - 1979
    However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

Elliptic Tales: Curves, Counting, and Number Theory


Avner Ash - 2012
    The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.

The Weather Factor


Erik Durschmied - 2000
    This title examines climatic devastation and the uncertainty that the weather brings.

G. W. Leibniz's Monadology: An Edition for Students


Gottfried Wilhelm Leibniz - 1714
    Leibniz' Monadology, one of the most important pieces of the Leibniz corpus, is at once one of the great classics of modern philosophy & one of its most puzzling productions. Because the essay is written in so compactly condensed a fashion, for almost three centuries it has baffled & beguiled those who read it for the first time. Nicholas Rescher accompanies the text of the Monadology section-by-section with relevant excerpts from some of Leibniz' widely scattered discussions of the matters at issue. The result serves a dual purpose of providing a commentary of the Monadology by Leibniz himself, while at the same time supplying an exposition of his philosophy using the Monadology as an outline. The book contains all the materials that even the most careful study of this text could require: a detailed overview of the philosophical background of the work & of its bibliographic ramifications; a presentation of the original French text together with a new, closely faithful English translation; a selection of other relevant Leibniz texts; & a detailed commentary. Rescher also provides a survey of Leibniz' use of analogies & three separate indices of key terms & expressions, Leibniz' French terminology, & citations. Rescher's edition of the Monadology presents Leibniz' ideas faithfully, accurately & accessibly, making it especially valuable to scholars & students alike.