Learning OpenCV: Computer Vision with the OpenCV Library


Gary Bradski - 2008
    Freeman, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyLearning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data. Computer vision is everywhere-in security systems, manufacturing inspection systems, medical image analysis, Unmanned Aerial Vehicles, and more. It stitches Google maps and Google Earth together, checks the pixels on LCD screens, and makes sure the stitches in your shirt are sewn properly. OpenCV provides an easy-to-use computer vision framework and a comprehensive library with more than 500 functions that can run vision code in real time.Learning OpenCV will teach any developer or hobbyist to use the framework quickly with the help of hands-on exercises in each chapter. This book includes:A thorough introduction to OpenCV Getting input from cameras Transforming images Segmenting images and shape matching Pattern recognition, including face detection Tracking and motion in 2 and 3 dimensions 3D reconstruction from stereo vision Machine learning algorithms Getting machines to see is a challenging but entertaining goal. Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book you need to get started.

Engineering Software as a Service: An Agile Approach Using Cloud Computing + $10 AWS Credit


Armando Fox - 2013
    This book is neither a step-by-step tutorial nor a reference book. Instead, our goal is to bring a diverse set of software engineering topics together into a single narrative, help readers understand the most important ideas through concrete examples and a learn-by-doing approach, and teach readers enough about each topic to get them started in the field. Courseware for doing the work in the book is available as a virtual machine image that can be downloaded or deployed in the cloud. A free MOOC (massively open online course) at saas-class.org follows the book's content and adds programming assignments and quizzes. See http://saasbook.info for details.

Async in C# 5.0


Alex Davies - 2012
    Along with a clear introduction to asynchronous programming, you get an in-depth look at how the async feature works and why you might want to use it in your application.Written for experienced C# programmers—yet approachable for beginners—this book is packed with code examples that you can extend for your own projects.Write your own asynchronous code, and learn how async saves you from this messy choreDiscover new performance possibilities in ASP.NET web server codeExplore how async and WinRT work together in Windows 8 applicationsLearn the importance of the await keyword in async methodsUnderstand which .NET thread is running your code—and at what points in the programUse the Task-based Asynchronous Pattern (TAP) to write asynchronous APIs in .NETTake advantage of parallel computing in modern machinesMeasure async code performance by comparing it with alternatives

Database Processing: Fundamentals, Design, and Implementation


David M. Kroenke - 1983
    This tenth edition reflects the needs of students and assures the development of practical and marketable skills. It helps them learn: how to query data and obtain results, by presenting the SQL Select. It provides a framework to help students learn this material.

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Statistics Done Wrong: The Woefully Complete Guide


Alex Reinhart - 2013
    Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.

Think Stats


Allen B. Downey - 2011
    This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive Software and Hardware Problems


David J. Agans - 2002
    Written in a frank but engaging style, Debuggingprovides simple, foolproof principles guaranteed to help find any bug quickly. This book makes those shelves of application-specific debugging books (on C++, Perl, Java, etc.) obsolete. It changes the way readers think about debugging, making those pesky problems suddenly much easier to find and fix. Illustrating the rules with real-life bug-detection war stories, the book shows readers how to: * Understand the system: how perceiving the ""roadmap"" can hasten your journey * Quit thinking and look: when hands-on investigation can’t be avoided * Isolate critical factors: why changing one element at a time can be an essential tool * Keep an audit trail: how keeping a record of the debugging process can win the day

Ejb 3 in Action


Debu Panda - 2007
    This book builds on the contributions and strengths of seminal technologies like Spring, Hibernate, and TopLink.EJB 3 is the most important innovation introduced in Java EE 5.0. EJB 3 simplifies enterprise development, abandoning the complex EJB 2.x model in favor of a lightweight POJO framework. The new API represents a fresh perspective on EJB without sacrificing the mission of enabling business application developers to create robust, scalable, standards-based solutions.EJB 3 in Action is a fast-paced tutorial, geared toward helping you learn EJB 3 and the Java Persistence API quickly and easily. For newcomers to EJB, this book provides a solid foundation in EJB. For the developer moving to EJB 3 from EJB 2, this book addresses the changes both in the EJB API and in the way the developer should approach EJB and persistence.

Creating a Data-Driven Organization: Practical Advice from the Trenches


Carl Anderson - 2015
    This practical book shows you how true data-drivenness involves processes that require genuine buy-in across your company, from analysts and management to the C-Suite and the board.Through interviews and examples from data scientists and analytics leaders in a variety of industries, author Carl Anderson explains the analytics value chain you need to adopt when building predictive business models—from data collection and analysis to the insights and leadership that drive concrete actions. You’ll learn what works and what doesn’t, and why creating a data-driven culture throughout your organization is essential. Start from the bottom up: learn how to collect the right data the right way Hire analysts with the right skills, and organize them into teams Examine statistical and visualization tools, and fact-based story-telling methods Collect and analyze data while respecting privacy and ethics Understand how analysts and their managers can help spur a data-driven culture Learn the importance of data leadership and C-level positions such as chief data officer and chief analytics officer

Python Pocket Reference


Mark Lutz - 1998
    Hundreds of thousands of Python developers around the world rely on Python for general-purpose tasks, Internet scripting, systems programming, user interfaces, and product customization. Available on all major computing platforms, including commercial versions of Unix, Linux, Windows, and Mac OS X, Python is portable, powerful and remarkable easy to use.With its convenient, quick-reference format, "Python Pocket Reference," 3rd Edition is the perfect on-the-job reference. More importantly, it's now been refreshed to cover the language's latest release, Python 2.4. For experienced Python developers, this book is a compact toolbox that delivers need-to-know information at the flip of a page. This third edition also includes an easy-lookup index to help developers find answers fast!Python 2.4 is more than just optimization and library enhancements; it's also chock full of bug fixes and upgrades. And these changes are addressed in the "Python Pocket Reference," 3rd Edition. New language features, new and upgraded built-ins, and new and upgraded modules and packages--they're all clarified in detail.The "Python Pocket Reference," 3rd Edition serves as the perfect companion to "Learning Python" and "Programming Python."

Data Driven


D.J. Patil - 2015
    It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt. You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the key to success in the 21st century. You’ll explore: Data scientist skills—and why every company needs a Spock How the benefits of giving company-wide access to data outweigh the costs Why data-driven organizations use the scientific method to explore and solve data problems Key questions to help you develop a research-specific process for tackling important issues What to consider when assembling your data team Developing processes to keep your data team (and company) engaged Choosing technologies that are powerful, support teamwork, and easy to use and learn

Designing Data-Intensive Applications


Martin Kleppmann - 2015
    Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords?In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures

Sams Teach Yourself SQL™ in 10 Minutes


Ben Forta - 1999
    It also covers MySQL, and PostgreSQL. It contains examples which have been tested against each SQL platform, with incompatibilities or platform distinctives called out and explained.