Math on Trial: How Numbers Get Used and Abused in the Courtroom
Leila Schneps - 2013
Even the simplest numbers can become powerful forces when manipulated by politicians or the media, but in the case of the law, your liberty -- and your life -- can depend on the right calculation. In Math on Trial, mathematicians Leila Schneps and Coralie Colmez describe ten trials spanning from the nineteenth century to today, in which mathematical arguments were used -- and disastrously misused -- as evidence. They tell the stories of Sally Clark, who was accused of murdering her children by a doctor with a faulty sense of calculation; of nineteenth-century tycoon Hetty Green, whose dispute over her aunt's will became a signal case in the forensic use of mathematics; and of the case of Amanda Knox, in which a judge's misunderstanding of probability led him to discount critical evidence -- which might have kept her in jail. Offering a fresh angle on cases from the nineteenth-century Dreyfus affair to the murder trial of Dutch nurse Lucia de Berk, Schneps and Colmez show how the improper application of mathematical concepts can mean the difference between walking free and life in prison. A colorful narrative of mathematical abuse, Math on Trial blends courtroom drama, history, and math to show that legal expertise isn't't always enough to prove a person innocent.
Elementary Analysis: The Theory of Calculus
Kenneth A. Ross - 1980
It is highly recommended for anyone planning to study advanced analysis, e.g., complex variables, differential equations, Fourier analysis, numerical analysis, several variable calculus, and statistics. It is also recommended for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied. Many abstract ideas, such as metric spaces and ordered systems, are avoided. The least upper bound property is taken as an axiom and the order properties of the real line are exploited throughout. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics. Optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.
Math Riddles For Smart Kids: Math Riddles and Brain Teasers that Kids and Families will Love
M. Prefontaine - 2017
It is a collection of 150 brain teasing math riddles and puzzles. Their purpose is to make children think and stretch the mind. They are designed to test logic, lateral thinking as well as memory and to engage the brain in seeing patterns and connections between different things and circumstances. They are laid out in three chapters which get more difficult as you go through the book, in the author’s opinion at least. The answers are at the back of the book if all else fails. These are more difficult riddles and are designed to be attempted by children from 10 years onwards, as well as participation from the rest of the family. Tags: Riddles and brain teasers, riddles and trick questions, riddles book, riddles book for kids, riddles for kids, riddles for kids aged 9-12, riddles and puzzles, jokes and riddles, jokes book, jokes book for kids, jokes children, jokes for kids, jokes kids, puzzle book
Solving Mathematical Problems: A Personal Perspective
Terence Tao - 2006
Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.
From a Logical Point of View: Nine Logico-Philosophical Essays
Willard Van Orman Quine - 1953
At the same time adjacent portions of philosophy and logic are discussed. To the existence of what objects may a given scientific theory be said to be committed? And what considerations may suitably guide us in accepting or revising such ontological commitments? These are among the questions dealt with in this book, particular attention being devoted to the role of abstract entities in mathematics. There is speculation on the mechanism whereby objects of one sort or another come to be posited a process in which the notion of identity plays an important part."This volume of essays has a unity and bears throughout the imprint of Quine's powerful and original mind. It is written with the felicity in the choice of words which makes everything that Quine writes a pleasure to read, and which ranks him among the best contemporary writers on abstract subjects." (Cambridge Review)"Professor Quine's challenging and original views are here for the first time presented as a unity. The chief merit of the book is the heart-searching from which it arose and to which it will give rise. In vigour, conciseness, and clarity, it is characteristic of its author." (Oxford Magazine)
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
A Mathematician Plays The Stock Market
John Allen Paulos - 2003
In A Mathematician Plays the Stock Market , best-selling author John Allen Paulos employs his trademark stories, vignettes, paradoxes, and puzzles to address every thinking reader's curiosity about the market -- Is it efficient? Is it random? Is there anything to technical analysis, fundamental analysis, and other supposedly time-tested methods of picking stocks? How can one quantify risk? What are the most common scams? Are there any approaches to investing that truly outperform the major indexes? But Paulos's tour through the irrational exuberance of market mathematics doesn't end there. An unrequited (and financially disastrous) love affair with WorldCom leads Paulos to question some cherished ideas of personal finance. He explains why "data mining" is a self-fulfilling belief, why "momentum investing" is nothing more than herd behavior with a lot of mathematical jargon added, why the ever-popular Elliot Wave Theory cannot be correct, and why you should take Warren Buffet's "fundamental analysis" with a grain of salt. Like Burton Malkiel's A Random Walk Down Wall Street , this clever and illuminating book is for anyone, investor or not, who follows the markets -- or knows someone who does.
Bayes' Rule: A Tutorial Introduction to Bayesian Analysis
James V. Stone - 2013
Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, intuitive visual representations of real-world examples are used to show how Bayes' rule is actually a form of commonsense reasoning. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices who wish to gain an intuitive understanding of Bayesian analysis. As an aid to understanding, online computer code (in MatLab, Python and R) reproduces key numerical results and diagrams.Stone's book is renowned for its visually engaging style of presentation, which stems from teaching Bayes' rule to psychology students for over 10 years as a university lecturer.
Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks
Persi Diaconis - 2011
Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge.Diaconis and Graham tell the stories--and reveal the best tricks--of the eccentric and brilliant inventors of mathematical magic. The book exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card Monte, traces the history of mathematical magic back to the oldest mathematical trick--and much more.
Gaming the Vote: Why Elections Aren't Fair (and What We Can Do About It)
William Poundstone - 2008
presidential elections have been won by the second most popular candidate. The reason was a "spoiler"--a minor candidate who takes enough votes away from the most popular candidate to tip the election to someone else. The spoiler effect is more than a glitch. It is a consequence of one of the most surprising intellectual discoveries of the twentieth century: the "impossibility theorem" of Nobel laureate economist Kenneth Arrow. The impossibility theorem asserts that voting is fundamentally unfair--a finding that has not been lost on today's political consultants. Armed with polls, focus groups, and smear campaigns, political strategists are exploiting the mathematical faults of the simple majority vote. In recent election cycles, this has led to such unlikely tactics as Republicans funding ballot drives for Green spoilers and Democrats paying for right-wing candidates' radio ads. Gaming the Vote shows that there is a solution to the spoiler problem that will satisfy both right and left. A systemcalled range voting, already widely used on the Internet, is the fairest voting method of all, according to computer studies. Despite these findings, range voting remains controversial, and Gaming the Vote assesses the obstacles confronting any attempt to change the American electoral system. The latest of several books by William Poundstone on the theme of how important scientific ideas have affected the real world, Gaming the Vote is a wry exposé of how the political system really works, and a call to action.
Q.E.D.: Beauty in Mathematical Proof
Burkard Polster - 2004
presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
The Grapes of Math: How Life Reflects Numbers and Numbers Reflect Life
Alex Bellos - 2014
He sifts through over 30,000 survey submissions to uncover the world’s favourite number, and meets a mathematician who looks for universes in his garage. He attends the World Mathematical Congress in India, and visits the engineer who designed the first roller-coaster loop. Get hooked on math as Alex delves deep into humankind’s turbulent relationship with numbers, and reveals how they have shaped the world we live in.