Book picks similar to
Physics by Marcelo Alonso
physics
sciences
textbook
science
Electronic Devices (Conventional Current Version)
Thomas L. Floyd - 1984
Floyd is well known for straightforward, understandable explanations of complex concepts, as well as for non-technical, on-target treatment of mathematics. The extensive use of examples, Multisim simulations, and graphical illustrations makes even complex concepts understandable. From discrete components, to linear integrated circuits, to programmable analog devices, this books¿ coverage is well balanced between discrete and integrated circuits. Also includes focus on power amplifiers; BJT and FET amplifiers; advanced integrated circuits–instrumentation and isolation amplifiers; OTAs; log/antilog amplifiers; and converters. Thorough coverage of optical topics–high intensity LEDs and fiber optics. Devices sections on differential amplifiers and the IGBT (insulated gate bipolar transistor) are now included. For electronics technicians.
Internal Combustion Engine Fundamentals.
John B. Heywood - 1988
An illustration program supports the concepts and theories discussed.
Personality Theories
Barbara Engler - 1979
Each chapter focuses on one theory or group of theories, providing brief biographies that shed light on how the theories were formed.
Electricity and Magnetism
Elisha Gray - 2010
You may find it for free on the web. Purchase of the Kindle edition includes wireless delivery.
Principles of Electronic Communication Systems
Louis E. Frenzel - 1997
Requiring only basic algebra and trigonometry, the new edition is notable for its readability, learning features and numerous full-color photos and illustrations. A systems approach is used to cover state-of-the-art communications technologies, to best reflect current industry practice. This edition contains greatly expanded and updated material on the Internet, cell phones, and wireless technologies. Practical skills like testing and troubleshooting are integrated throughout. A brand-new Laboratory & Activities Manual provides both hands-on experiments and a variety of other activities, reflecting the variety of skills now needed by technicians. A new Online Learning Center web site is available, with a wealth of learning resources for students. An Instructor Productivity Center CD-ROM features solutions to all problems, PowerPoint lessons, and ExamView test banks for each chapter.
Introduction to Chemical Engineering Thermodynamics
J.M. Smith - 2010
This text provides a thorough exposition of the principles of thermodynamics and details their application to chemical processes. The new edition has been updated to reflect the growth in such areas as materials and electrochemicals.
Field and Wave Electromagnetics
David K. Cheng - 1982
These include applications drawn from important new areas of technology such as optical fibers, radome design, satellite communication, and microstrip lines. There is also added coverage of several new topics, including Hall effect, radar equation and scattering cross section, transients in transmission lines, waveguides and circular cavity resonators, wave propagation in the ionosphere, and helical antennas. New exercises, new problems, and many worked-out examples make this complex material more accessible to students.
Elements of Electromagnetics
Matthew N.O. Sadiku - 1993
The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.
Semiconductor Device Fundamentals
Robert F. Pierret - 1995
Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles
Robert M. Eisberg - 1974
Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.
Mechanical Metallurgy
George E. Dieter - 1961
It covers the entire scope of mechanical metallurgy, from an understanding of the continuum description of stress and strain, through crystalline and defect mechanisms of flow and fracture, and on to a consideration of major mechanical property tests and the basic metalworking process. It has been updated throughout, SI units have been added, and end-of-chapter study questions are included.
The Particles of the Universe
Jeff Yee - 2012
Everything around us, including matter, is energy. A deep look into the mysteries of the subatomic world – the particles that make up the atom – provides answers to basic questions about how the universe works. To solve the future of mankind’s energy needs we need to understand the basic building blocks of the universe, including the atom and its parts. By exploring the subatomic world we’ll find more answers to our questions about time, forces like gravity and the matter that surrounds us. More importantly, we’ll find new ways to tap into the energy that exists around us to power our growing needs. In a new branch of particle physics, where tiny particles are thought of as energy waves, we find new answers that may help us in our quest to find alternative energy sources.