Book picks similar to
Treatise on Thermodynamics by Max Planck
science
physics
thermodynamics
nonfiction
Proofs from the Book, 3e
Martin Aigner - 1998
Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."
In Search of Time: The Science of a Curious Dimension
Dan Falk - 2008
It defines our experience of the world; it echoes through our every waking hour. Time is the very foundation of conscious experience. Yet as familiar as it is, time is also deeply mysterious. We cannot see, hear, smell, taste, or touch it. Yet we do "feel" it--or at least we "think" we feel it. No wonder poets, writers, philosophers, and scientists have grappled with time for centuries.In his latest book, award-winning science writer Dan Falk chronicles the story of how humans have come to understand time over the millennia, and by drawing from the latest research in physics, psychology, and other fields, Falk shows how that understanding continues to evolve. "In Search of Time" begins with our earliest ancestors' perception of time and the discoveries that led--with much effort--to the Gregorian calendar, atomic clocks, and "leap seconds." Falk examines the workings of memory, the brain's remarkable "bridge across time," and asks whether humans are unique in their ability to recall the past and imagine the future. He explores the possibility of time travel, and the paradoxes it seems to entail. Falk looks at the quest to comprehend the beginning of time and how time--and the universe--may end. Finally, he examines the puzzle of time's "flow," and the remarkable possibility that the passage of time may be an illusion.Entertaining, illuminating, and ultimately thought provoking, "In Search of Time "reveals what some of our most insightful thinkers have had to say about time, from Aristotle to Kant, from Newton to Einstein, and continuing with the brightest minds of today.
Quantum Mechanics
Jim Al-Khalili - 2017
You'll discover how the sun shines, why light is both a wave and a particle, the certainty of the Uncertainty Principle, Schrodinger's Cat, Einstein's spooky action, how to build a quantum computer, and why quantum mechanics drives even its experts completely crazy.
'Jim Al-Khalili has done an admirable job of condensing the ideas of quantum physics from Max Planck to the possibilities of quantum computers into brisk, straightforward English' The Times
Every Living Thing: Man's Obsessive Quest to Catalog Life, from Nanobacteria to New Monkeys
Rob Dunn - 2008
Ehrlich, author of The Dominant Animal Biologist Rob Dunn’s Every Little Thing is the story of man’s obsessive quest to catalog life, from nanobacteria to new monkeys. In the tradition of E.O. Wilson, this engaging and fascinating work of popular science follows humanity’s unending quest to discover every living thing in our natural world—from the unimaginably small in the most inhospitable of places on earth to the unimaginably far away in the unexplored canals on Mars.
How to Study for a Mathematics Degree
Lara Alcock - 2012
Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation to proof, so students are expected to interact with it in different ways. These changes need not be mysterious - mathematics education research has revealed many insights into the adjustments that are necessary - but they are not obvious and they do need explaining.This no-nonsense book translates these research-based insights into practical advice for a student audience. It covers every aspect of studying for a mathematics degree, from the most abstract intellectual challenges to the everyday business of interacting with lecturers and making good use of study time. Part 1 provides an in-depth discussion of advanced mathematical thinking, and explains how a student will need to adapt and extend their existing skills in order to develop a good understanding of undergraduate mathematics. Part 2 covers study skills as these relate to the demands of a mathematics degree. It suggests practical approaches to learning from lectures and to studying for examinations while also allowing time for a fulfilling all-round university experience.The first subject-specific guide for students, this friendly, practical text will be essential reading for anyone studying mathematics at university.
The Spiritual Physics of Light: How We See, Feel, and Know Truth
Aaron D. Franklin - 2021
Elementary Solid State Physics: Principles and Applications
M. Ali Omar - 1975
I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
The Mathematical Experience
Philip J. Davis - 1980
This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.
The Magic of Math: Solving for X and Figuring Out Why
Arthur T. Benjamin - 2015
joyfully shows you how to make nature's numbers dance."--Bill Nye (the science guy)The Magic of Math is the math book you wish you had in school. Using a delightful assortment of examples-from ice-cream scoops and poker hands to measuring mountains and making magic squares-this book revels in key mathematical fields including arithmetic, algebra, geometry, and calculus, plus Fibonacci numbers, infinity, and, of course, mathematical magic tricks. Known throughout the world as the "mathemagician," Arthur Benjamin mixes mathematics and magic to make the subject fun, attractive, and easy to understand for math fan and math-phobic alike."A positively joyful exploration of mathematics."-Publishers Weekly, starred review"Each [trick] is more dazzling than the last."-Physics World
Entertaining Mathematical Puzzles
Martin Gardner - 1986
Puzzlists need only an elementary knowledge of math and a will to resist looking up the answer before trying to solve a problem.Written in a light and witty style, Entertaining Mathematical Puzzles is a mixture of old and new riddles, grouped into sections that cover a variety of mathematical topics: money, speed, plane and solid geometry, probability, topology, tricky puzzles, and more. The probability section, for example, points out that everything we do, everything that happens around us, obeys the laws of probability; geometry puzzles test our ability to think pictorially and often, in more than one dimension; while topology, among the "youngest and rowdiest branches of modern geometry," offers a glimpse into a strange dimension where properties remain unchanged, no matter how a figure is twisted, stretched, or compressed.Clear and concise comments at the beginning of each section explain the nature and importance of the math needed to solve each puzzle. A carefully explained solution follows each problem. In many cases, all that is needed to solve a puzzle is the ability to think logically and clearly, to be "on the alert for surprising, off-beat angles...that strange hidden factor that everyone else had overlooked."Fully illustrated, this engaging collection will appeal to parents and children, amateur mathematicians, scientists, and students alike, and may, as the author writes, make the reader "want to study the subject in earnest" and explains "some of the inviting paths that wind away from the problems into lusher areas of the mathematical jungle." 65 black-and-white illustrations.
String Theory For Dummies
Andrew Zimmerman Jones - 2009
String Theory For Dummies offers an accessible introduction to this highly mathematical "theory of everything," which posits ten or more dimensions in an attempt to explain the basic nature of matter and energy. Written for both students and people interested in science, this guide explains concepts, discusses the string theory's hypotheses and predictions, and presents the math in an approachable manner. It features in-depth examples and an easy-to-understand style so that readers can understand this controversial, cutting-edge theory.
Introducing philosophy
Open University - 2016
This 8-hour free course introduced the study of philosophy and the methods employed by The Open University in teaching philosophy.
The Theoretical Minimum: What You Need to Know to Start Doing Physics
Leonard Susskind - 2013
In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.